On numerical study of the discrete spectrum of a two-dimensional Schrödinger operator with soliton potential

dc.contributor.authorAdilkhanov, A.N.
dc.contributor.authorTaimanov, I.A.
dc.creatorA.N., Adilkhanov
dc.date.accessioned2017-12-20T03:31:47Z
dc.date.available2017-12-20T03:31:47Z
dc.date.issued2017-01-01
dc.description.abstractAbstract The discrete spectra of certain two-dimensional Schrödinger operators are numerically calculated. These operators are obtained by the Moutard transformation and have interesting spectral properties: their kernels are multi-dimensional and the deformations of potentials via the Novikov–Veselov equation (a two-dimensional generalization of the Korteweg–de Vries equation) lead to blowups. The calculations supply the numerical evidence for some statements about the integrable systems related to a 2D Schrödinger operator. The numerical scheme is applicable to a general 2D Schrödinger operator with fast decaying potential.en_US
dc.identifierDOI:10.1016/j.cnsns.2016.04.033
dc.identifier.citationA.N. Adilkhanov, I.A. Taimanov, On numerical study of the discrete spectrum of a two-dimensional Schrödinger operator with soliton potential, In Communications in Nonlinear Science and Numerical Simulation, Volume 42, 2017, Pages 83-92en_US
dc.identifier.issn10075704
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1007570416301356
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/2956
dc.language.isoenen_US
dc.publisherCommunications in Nonlinear Science and Numerical Simulationen_US
dc.relation.ispartofCommunications in Nonlinear Science and Numerical Simulation
dc.rights.license© 2016 Elsevier B.V. All rights reserved.
dc.subjectSchrodinger operatoren_US
dc.subjectDiscrete spectrumen_US
dc.subjectGalerkin methoden_US
dc.subjectSoliton,en_US
dc.titleOn numerical study of the discrete spectrum of a two-dimensional Schrödinger operator with soliton potentialen_US
dc.typeArticleen_US
elsevier.aggregationtypeJournal
elsevier.coverdate2017-01-01
elsevier.coverdisplaydateJanuary 2017
elsevier.endingpage92
elsevier.identifier.doi10.1016/j.cnsns.2016.04.033
elsevier.identifier.eid1-s2.0-S1007570416301356
elsevier.identifier.piiS1007-5704(16)30135-6
elsevier.identifier.scopusid84971265155
elsevier.openaccess0
elsevier.openaccessarticlefalse
elsevier.openarchivearticlefalse
elsevier.startingpage83
elsevier.teaserThe discrete spectra of certain two-dimensional Schrödinger operators are numerically calculated. These operators are obtained by the Moutard transformation and have interesting spectral properties:...
elsevier.volume42
workflow.import.sourcescience

Files

Collections