On numerical study of the discrete spectrum of a two-dimensional Schrödinger operator with soliton potential
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Communications in Nonlinear Science and Numerical Simulation
Abstract
Abstract The discrete spectra of certain two-dimensional Schrödinger operators are numerically calculated. These operators are obtained by the Moutard transformation and have interesting spectral properties: their kernels are multi-dimensional and the deformations of potentials via the Novikov–Veselov equation (a two-dimensional generalization of the Korteweg–de Vries equation) lead to blowups. The calculations supply the numerical evidence for some statements about the integrable systems related to a 2D Schrödinger operator. The numerical scheme is applicable to a general 2D Schrödinger operator with fast decaying potential.
Description
Citation
A.N. Adilkhanov, I.A. Taimanov, On numerical study of the discrete spectrum of a two-dimensional Schrödinger operator with soliton potential, In Communications in Nonlinear Science and Numerical Simulation, Volume 42, 2017, Pages 83-92