The lumped model parameters approach for static and dynamic power-law beam problems
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Nazarbayev University School of Science and Technology
Abstract
It is important to estimate the natural frequencies of the structural elements in the design of mechanical or electromechanical structures. There is a wide use of single lumped-parameter spring-mass models in the industry for materials . Their behaviour is linear by Hooke’s law within the geometric and loading conditions. In this work, the lumped-parameter theory is generalized for Hollomon’s power-law materials and the lumped-parameters for the corresponding nonlinear restoring force in the spring-like model for the standard geometric and loading conditions of the power-law Euler beams are provided. For each case in the given lumped-parameter model the corresponding effective mass is also calculated. Then, the resulting spring-mass system is solved to validate the solutions as approximations to the corresponding beam system.
Numerical validations of the proposed lumped models for the cantilever beam with circular and rectangular cross-sections are presented.
Description
Submitted to the Department of Mathematics on Apr 29, 2019, in partial fulfillment of the requirements for the degree of Master of Science in Applied Mathematics
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States
