Power Series Solutions of a NODE Systemin the Complex Domain
Loading...
Files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Nazarbayev University School of Science and Technology
Abstract
In this Capstone Project, we analyze a second order nonlinear ordinary differential equation (NODE), y^" (x)=f(y^',y) that is impossible to solve analytically. First, using the Taylor Power Series method, we obtain a series expansion of the solution y(x) about x = 0 for x ∈R and find that this series diverges for values of x a little above x = 1. This implies that the equation has a singularity in the complex domain. Therefore, we investigate this NODE by using Laurent expansions about the unknown singularity at x =x_*, which is called movable because its location depends on the initial conditions. By finding the general form of these expansions, we obtain approximate expressions for the singularity closest to x = 0 and thus are able to estimate the radius of convergence for different initial conditions. We also integrate numerically the solutions in the real x, y plane and demonstrate the connection of the global form of the solutions of the problem with the predictions of our laurent series expansions in the complex x- plane.
Description
Citation
Madiyeva, Aigerim. (2018) Power Series Solutions of a NODE Systemin the Complex Domain. Nazarbayev University School of Science and Technology
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States
