Friedberg numberings in the Ershov hierarchy

dc.contributor.authorBadaev, S. A.
dc.contributor.authorMustafa, M.
dc.contributor.authorSorbi, Andrea
dc.date.accessioned2015-12-25T04:57:24Z
dc.date.available2015-12-25T04:57:24Z
dc.date.issued2014
dc.description.abstractWe show that for every n 1, there exists a 􀀀1n -computable family which up to equivalence has exactly one Friedberg numbering which does not induce the least element of the corresponding Rogers semilattice.ru_RU
dc.identifier.citationBadaev S. A., Mustafa M., Sorbi Andrea; 2014; Friedberg numberings in the Ershov hierarchyru_RU
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/970
dc.language.isoenru_RU
dc.subjectResearch Subject Categories::MATHEMATICSru_RU
dc.subjectminimal numberingsru_RU
dc.titleFriedberg numberings in the Ershov hierarchyru_RU
dc.typeArticleru_RU

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Friedberg numberings in the Ershov hierarchy.pdf
Size:
350.47 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections