Friedberg numberings in the Ershov hierarchy
dc.contributor.author | Badaev, S. A. | |
dc.contributor.author | Mustafa, M. | |
dc.contributor.author | Sorbi, Andrea | |
dc.date.accessioned | 2015-12-25T04:57:24Z | |
dc.date.available | 2015-12-25T04:57:24Z | |
dc.date.issued | 2014 | |
dc.description.abstract | We show that for every n 1, there exists a 1n -computable family which up to equivalence has exactly one Friedberg numbering which does not induce the least element of the corresponding Rogers semilattice. | ru_RU |
dc.identifier.citation | Badaev S. A., Mustafa M., Sorbi Andrea; 2014; Friedberg numberings in the Ershov hierarchy | ru_RU |
dc.identifier.uri | http://nur.nu.edu.kz/handle/123456789/970 | |
dc.language.iso | en | ru_RU |
dc.subject | Research Subject Categories::MATHEMATICS | ru_RU |
dc.subject | minimal numberings | ru_RU |
dc.title | Friedberg numberings in the Ershov hierarchy | ru_RU |
dc.type | Article | ru_RU |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Friedberg numberings in the Ershov hierarchy.pdf
- Size:
- 350.47 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: