Friedberg numberings in the Ershov hierarchy
Loading...
Date
2014
Authors
Badaev, S. A.
Mustafa, M.
Sorbi, Andrea
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We show that for every n 1, there exists a 1n -computable family which up to equivalence has exactly one Friedberg numbering which does not induce the least element of the corresponding Rogers semilattice.
Description
Keywords
Research Subject Categories::MATHEMATICS, minimal numberings
Citation
Badaev S. A., Mustafa M., Sorbi Andrea; 2014; Friedberg numberings in the Ershov hierarchy