Friedberg numberings in the Ershov hierarchy
Loading...
Date
Authors
Badaev, S. A.
Mustafa, M.
Sorbi, Andrea
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We show that for every n 1, there exists a 1n -computable family which up to equivalence has exactly one Friedberg numbering which does not induce the least element of the corresponding Rogers semilattice.
Description
Citation
Badaev S. A., Mustafa M., Sorbi Andrea; 2014; Friedberg numberings in the Ershov hierarchy