Friedberg numberings in the Ershov hierarchy

Loading...
Thumbnail Image

Date

2014

Authors

Badaev, S. A.
Mustafa, M.
Sorbi, Andrea

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

We show that for every n 1, there exists a 􀀀1n -computable family which up to equivalence has exactly one Friedberg numbering which does not induce the least element of the corresponding Rogers semilattice.

Description

Keywords

Research Subject Categories::MATHEMATICS, minimal numberings

Citation

Badaev S. A., Mustafa M., Sorbi Andrea; 2014; Friedberg numberings in the Ershov hierarchy

Collections