Long-Tail Theory Under Gaussian Mixtures

dc.contributor.authorZhenisbek Assylbekov
dc.contributor.authorVassilina Nikoulina
dc.contributor.authorArtur Pak
dc.contributor.authorIgor Melnykov
dc.contributor.authorMaxat Tezekbayev
dc.contributor.authorArman Bolatov
dc.date.accessioned2025
dc.date.issued2023
dc.description.abstractWe suggest a simple Gaussian mixture model for data generation that complies with Feldman’s long tail theory (2020). We demonstrate that a linear classifier cannot decrease the generalization error below a certain level in the proposed model, whereas a nonlinear classifier with a memorization capacity can. This confirms that for long-tailed distributions, rare training examples must be considered for optimal generalization to new data. Finally, we show that the performance gap between linear and nonlinear models can be lessened as the tail becomes shorter in the subpopulation frequency distribution, as confirmed by experiments on synthetic and real data.
dc.identifier.citationArman Bolatov, Maxat Tezekbayev, Igor Melnykov, Artur Pak, Vassilina Nikoulina, & Zhenisbek Assylbekov (2023). Long-Tail Theory Under Gaussian Mixtures. . https://doi.org/10.3233/FAIA230260
dc.identifier.doi10.3233/FAIA230260
dc.identifier.urihttps://doi.org/10.3233/FAIA230260
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/17460
dc.languageen
dc.publisherFrontiers in Artificial Intelligence and Applications
dc.rightsAll rights reserved
dc.sourceFrontiers in Artificial Intelligence and Applications
dc.subjectUnsupervised learning
dc.subjectQuantum mechanics
dc.subjectMathematical analysis
dc.subjectPhysics
dc.subjectPattern recognition (psychology)
dc.subjectStatistical physics
dc.subjectApplied mathematics
dc.subjectAlgorithm
dc.subjectComputer science
dc.subjectTraining set
dc.subjectMathematics
dc.subjectArtificial intelligence
dc.subjectGeneralization error
dc.subjectNonlinear system
dc.subjectGeneralization
dc.subjectClassifier (UML)
dc.subjectGaussian
dc.titleLong-Tail Theory Under Gaussian Mixtures
dc.typeArticle

Files