Computer simulation of decaborane implantation and rapid thermal annealing

Loading...
Thumbnail Image

Date

1999-12

Authors

Insepov, Z.
Aoki, T.
Matsuo, J.
Yamada, I.

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE. Ion Implantation Technology Proceedings, 1998 International Conference

Abstract

Molecular Dynamics (MD) and Metropolis Monte- Carlo (MMC) models of monomer B and decaborane implantation into Si and following rapid thermal annealing (RTA) processes have been developed. The implanted B dopant and Si-atomic diffusion coefficients were obtained for different substrate temperatures. The simulation of decaborane ion implantation has revealed the formation of an amorphized area in a subsurface region, much larger than that of a single B+ implantation, with the same energy per ion. The calculated B diffusion coefficient has values between 10-'2-10-1c0m 2 s" which agrees well with experimental values obtained for an equilibrium B dopant in Si. Our calculations have shown an unusual temperature dependence with two different activation energies. Low activation energy, less than 0.2 eV, was obtained for a low temperature region, and a higher activation energy, - 3 eV, for a higher-temperature region which is typical for the RTA processing. The higher activation energy is comparable with the equilibrium activation energy, 3.4 eV, for B diffusion in Si. The diffusivity for Si atoms was obtained to be in the interval - l0l2 cm2 s-I. In our present simulation for decaborane cluster implantation into Si, we have not observed the TED phenomenon.

Description

Keywords

Molecular Dynamics (MD), computer simulation, decaborane implantation, rapid thermal annealing (RTA)

Citation

Zinetulla Insepov, T Aoki, J Matsuo, I Yamada. 1999/12. Computer simulation of decaborane implantation and rapid thermal annealing. IEEE. Ion Implantation Technology Proceedings, 1998 International Conference