Bernstein-walsh inequalities in higherdimensions over exponential curves

dc.contributor.authorKadyrov, Shirali
dc.contributor.authorLawrence, Mark
dc.date.accessioned2015-12-28T06:13:51Z
dc.date.available2015-12-28T06:13:51Z
dc.date.issued2011
dc.description.abstractLet x = (x1; : : : ; xd) 2 [􀀀1; 1]d be linearly independent over Z, set K = f(ez; ex1z; ex2z : : : ; exdz) : jzj 1g:We prove sharp estimates for the growth of a polynomial of degree n, in terms of En(x) := supfkPk d+1 : P 2 Pn(d + 1); kPkK 1g; where d+1 is the unit polydisk. For all x 2 [􀀀1; 1]d with linearly independent entries, we have the lower estimate logEn(x) nd+1 (d 􀀀 1)!(d + 1) log n 􀀀 O(nd+1); for Diophantine x, we have logEn(x) nd+1 (d 􀀀 1)!(d + 1) log n + O(nd+1): In particular, this estimate holds for almost all x with respect to Lebesgue measure. The results here generalize those of [6] for d = 1, without relying on estimates for best approximants of rational numbers which do not hold in the vector-valued setting.ru_RU
dc.identifier.citationKadyrov Shirali, Lawrence Mark; 2011; Bernstein-walsh inequalities in higherdimensions over exponential curvesru_RU
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/978
dc.language.isoenru_RU
dc.subjectResearch Subject Categories::MATHEMATICSru_RU
dc.subjectbernstein-walsh inequalitiesru_RU
dc.titleBernstein-walsh inequalities in higherdimensions over exponential curvesru_RU
dc.typeArticleru_RU

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ExpEst.pdf
Size:
325.97 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections