DSpace Repository

AGE REPROGRAMMING AND EPIGENETIC REJUVENATION

Show simple item record

dc.contributor.author Kulaissova, A.
dc.contributor.author Singh, Prim B.
dc.date.accessioned 2020-12-03T09:52:27Z
dc.date.available 2020-12-03T09:52:27Z
dc.date.issued 2020
dc.identifier.uri http://nur.nu.edu.kz/handle/123456789/5170
dc.description.abstract Introduction: Age reprogramming represents a novel method for generating patient-specific tissues for transplantation. It bypasses the de-differentiation/re-differentiation cycle that is characteristic of the induced pluripotent stem (iPS) and nuclear transfer-embryonic stem (NT-ES) cell technologies that drive current interest in regenerative medicine. Despite the obvious potential of iPS and NT-ES cell-based therapies, there are several problems that must be overcome before these therapies are safe and routine. Methods: As an alternative, age reprogramming aims to rejuvenate the specialized functions of an old cell without de-differentiation; age reprogramming does not require developmental reprogramming through an embryonic stage, unlike the iPS and NT-ES cell-based therapies. Tests of age reprogramming have largely focused on one aspect, the epigenome. Results: We have shown that epigenetic rejuvenation can be achieved in vitro in the absence of dedifferentiation using iPS cell reprogramming factors. Recent Studies on the dynamics of epigenetic age (eAge) reprogramming have demonstrated that the separation of eAge from developmental reprogramming can be explained largely by their different kinetics. Age reprogramming has also been achieved in vivo and shown to increase lifespan in a premature ageing mouse model. Conclusion: We conclude that age and developmental reprogramming can be disentangled and regulated independently in vitro and in vivo. The stage is now set to develop technologies that will rejuvenate cells without the need to go through an embryonic stage – that is to simply make old cells young. en_US
dc.language.iso en en_US
dc.publisher International conference "MODERN PERSPECTIVES FOR BIOMEDICAL SCIENCES: FROM BENCH TO BEDSIDE”; National Laboratory Astana en_US
dc.rights Attribution-NonCommercial-ShareAlike 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/us/ *
dc.subject age reprogramming en_US
dc.subject epigenetic rejuvenation en_US
dc.subject somatic cell nuclear transfer en_US
dc.subject SCNT en_US
dc.subject eAge en_US
dc.subject Research Subject Categories::MEDICINE en_US
dc.title AGE REPROGRAMMING AND EPIGENETIC REJUVENATION en_US
dc.type Abstract en_US
workflow.import.source science


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States

Video Guide

Submission guideSubmission guide

Submit your materials for publication to

NU Repository Drive

Browse

My Account

Statistics