DSpace Repository

Analysis of the dependence of the structural parameters of membranes based on NOA and anode current on the parameters of the production process

Система будет остановлена для регулярного обслуживания. Пожалуйста, сохраните рабочие данные и выйдите из системы.

Show simple item record

dc.contributor.author Batalova, M.S.
dc.contributor.author Alpysbayeva, B.E.
dc.contributor.author Korobova, N.E.
dc.date.accessioned 2020-11-04T09:38:29Z
dc.date.available 2020-11-04T09:38:29Z
dc.date.issued 2020-08
dc.identifier.uri http://nur.nu.edu.kz/handle/123456789/5061
dc.description.abstract Among the porous membranes, PAOA-based membranes, formed by the method of electrochemical anodizing of aluminum foil, are of the greatest interest. Membranes obtained by electrochemical anodization are highly ordered structures with parallel vertical pores [1]. The unique porous structure, the parameters (diameter, length and distance between adjacent pores) of which can be varied during the synthesis process allows the use of films of porous aluminum oxide as inorganic membranes, templating material for the synthesis of nanowires or nanotubes with a controlled diameter and high geometric anisotropy, as well as 2D photonic crystals and biosensors [2,3]. Aluminum foil (99.999%) with a thickness of 0.5 mm was used as the starting material for the synthesis of films of porous aluminum oxide. Oxide layer formed on the foil surface was removed by electrochemical polishing of aluminum in a mixture of 40g CrO3 + 210 ml H3PO4 (concentrated acid) + 45 ml H2O at a temperature of 80°C. The membranes based on porous alumina were obtained by a two-stage anodizing process in 0.4 M oxalic acid at a temperature of 4–19 ° C. With an increase in the magnitude of the voltage, the thickness of the porous film, which grows in the same time, increases; the growth rate of the film grows sublinearly. With increasing voltage value, the initial value of the anode current also increases. The anode current in the anodization process gradually decreases, which, as already noted, indicates the beginning of pore formation and further stabilization of the anode current occurs when the pores grow deep into the oxide film. According to the data obtained on the dependence of the anode current on the time of the anodization process, it can be concluded that the maximum current value at room temperature is higher than at low temperature, and this can be traced for all voltage values. en_US
dc.language.iso en en_US
dc.publisher The 8th International Conference on Nanomaterials and Advanced Energy Storage Systems; Nazarbayev University; National Laboratory Astana; Institute of Batteries en_US
dc.rights Attribution-NonCommercial-ShareAlike 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/us/ *
dc.subject NOA en_US
dc.subject aluminum foil en_US
dc.subject Research Subject Categories::TECHNOLOGY en_US
dc.subject PAOA-based membranes en_US
dc.subject electrochemical anodizing en_US
dc.title Analysis of the dependence of the structural parameters of membranes based on NOA and anode current on the parameters of the production process en_US
dc.type Abstract en_US
workflow.import.source science


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States