Lower bounds on the F-pure threshold and extremal singularities
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Publisher
American Mathematical Society (AMS)
Abstract
We prove that if f f is a reduced homogeneous polynomial of degree d d , then its F F -pure threshold at the unique homogeneous maximal ideal is at least 1 d − 1 \frac {1}{d-1} . We show, furthermore, that its F F -pure threshold equals 1 d − 1 \frac {1}{d-1} if and only if f ∈ m [ q ] f\in \mathfrak m^{[q]} and d = q + 1 d=q+1 , where q q is a power of p p . Up to linear changes of coordinates (over a fixed algebraically closed field), we classify such “extremal singularities”, and show that there is at most one with isolated singularity. Finally, we indicate several ways in which the projective hypersurfaces defined by such forms are “extremal”, for example, in terms of the configurations of lines they can contain.
Description
Keywords
Citation
Kadyrsizova Zhibek; Kenkel Jennifer; Page Janet; Singh Jyoti; Smith Karen; Vraciu Adela; Witt Emily. (2022). Lower bounds on the F-pure threshold and extremal singularities. Transactions of the American Mathematical Society, Series B. https://doi.org/10.1090/btran/106