Lower bounds on the F-pure threshold and extremal singularities

dc.contributor.authorKadyrsizova Zhibek
dc.contributor.authorKenkel Jennifer
dc.contributor.authorPage Janet
dc.contributor.authorSingh Jyoti
dc.contributor.authorSmith Karen
dc.contributor.authorVraciu Adela
dc.contributor.authorWitt Emily
dc.date.accessioned2025-08-27T04:54:59Z
dc.date.available2025-08-27T04:54:59Z
dc.date.issued2022-10-20
dc.description.abstractWe prove that if f f is a reduced homogeneous polynomial of degree d d , then its F F -pure threshold at the unique homogeneous maximal ideal is at least 1 d − 1 \frac {1}{d-1} . We show, furthermore, that its F F -pure threshold equals 1 d − 1 \frac {1}{d-1} if and only if f ∈ m [ q ] f\in \mathfrak m^{[q]} and d = q + 1 d=q+1 , where q q is a power of p p . Up to linear changes of coordinates (over a fixed algebraically closed field), we classify such “extremal singularities”, and show that there is at most one with isolated singularity. Finally, we indicate several ways in which the projective hypersurfaces defined by such forms are “extremal”, for example, in terms of the configurations of lines they can contain.en
dc.identifier.citationKadyrsizova Zhibek; Kenkel Jennifer; Page Janet; Singh Jyoti; Smith Karen; Vraciu Adela; Witt Emily. (2022). Lower bounds on the F-pure threshold and extremal singularities. Transactions of the American Mathematical Society, Series B. https://doi.org/10.1090/btran/106en
dc.identifier.doi10.1090/btran/106
dc.identifier.urihttps://doi.org/10.1090/btran/106
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/10423
dc.language.isoen
dc.publisherAmerican Mathematical Society (AMS)
dc.source(2022)en
dc.titleLower bounds on the F-pure threshold and extremal singularitiesen
dc.typearticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1090_btran_106.pdf
Size:
364.14 KB
Format:
Adobe Portable Document Format

Collections