Nonlinear waves in hyperbolic metamaterials: focus on solitons and rogues

dc.contributor.authorGuo, T.
dc.contributor.authorGrimalsky, V. V.
dc.contributor.authorArgyropoulos, Christos
dc.contributor.authorValagiannopoulos, Costas
dc.contributor.authorBoardman, Allan D.
dc.contributor.authorRapoport, Yuriy G.
dc.contributor.authorNefedov, Igor
dc.contributor.authorMcNiff, James
dc.contributor.authorKibler, Bertrand
dc.contributor.authorKibler, Bertrand
dc.date.accessioned2025-08-19T09:19:44Z
dc.date.available2025-08-19T09:19:44Z
dc.date.issued2018-05-07
dc.description.abstractThis work develops a nonlinear Schrödinger‑type model specific to type II hyperbolic metamaterials, capturing non‑stationary diffraction and dispersion behaviors in planar hyperbolic media. Numerical experiments reveal that Peregrine and near‑Peregrine solitons—rogue wave–like phenomena—can emerge within this nonlinear hyperbolic environment, providing new pathways for rogue wave formation potentially controllable via magneto‑optical tuning.
dc.identifier.citationBoardman AD, Grimalsky VV, Guo T, Kibler B, McNiff J, Nefedov I, Rapoport Y, Argyropoulos C, Valagiannopoulos C (2018). Nonlinear waves in hyperbolic metamaterials: Focus on solitons and rogues. In: Zayats AV, Boardman AD, MacDonald KF (eds), Metamaterials XI (Proceedings of SPIE – The International Society for Optical Engineering), Vol. 10671, Article 106710L. SPIE. doi:10.1117/12.2306937
dc.identifier.doi10.1117/12.2306937
dc.identifier.otherFilename:10.1117_12.2306937.pdf
dc.identifier.urihttps://doi.org/10.1117/12.2306937
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9487
dc.language.isoen
dc.publisherSPIE
dc.relation.ispartofMetamaterials XIen
dc.sourceMetamaterials XI, 20, (2018)en
dc.subjectnonlinear waves, hyperbolic metamaterials, solitons, rogue waves, nonlinear Schrödinger equation
dc.titleNonlinear waves in hyperbolic metamaterials: focus on solitons and roguesen
dc.typeJournal Articleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
106710L.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format

Collections