Fast and stable unitary QR algorithm
dc.contributor.author | Aurentz, Jared L. | |
dc.contributor.author | Mach, Thomas | |
dc.contributor.author | Vandebril, Raf | |
dc.contributor.author | Watkins, David S. | |
dc.date.accessioned | 2017-01-09T10:28:50Z | |
dc.date.available | 2017-01-09T10:28:50Z | |
dc.date.issued | 2015 | |
dc.description.abstract | A fast Fortran implementation of a variant of Gragg's unitary Hessenberg QR algorithm is presented. It is proved, moreover, that all QR- And QZ-like algorithms for the unitary eigenvalue problems are equivalent. The algorithm is backward stable. Numerical experiments are presented that confirm the backward stability and compare the speed and accuracy of this algorithm with other methods. | ru_RU |
dc.identifier.citation | Aurentz, J. L., Mach, T., Vandebril, R., & Watkins, D. S. (2015). Fast and stable unitary QR algorithm. Electronic Transactions on Numerical Analysis, 44, 327-341. | ru_RU |
dc.identifier.uri | http://nur.nu.edu.kz/handle/123456789/2226 | |
dc.language.iso | en | ru_RU |
dc.publisher | Electronic Transactions on Numerical Analysis | ru_RU |
dc.rights | Attribution-NonCommercial-ShareAlike 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/us/ | * |
dc.subject | core transformations rotators | ru_RU |
dc.subject | eigenvalue | ru_RU |
dc.subject | Francis's QR algorithm | ru_RU |
dc.subject | unitary matrix | ru_RU |
dc.title | Fast and stable unitary QR algorithm | ru_RU |
dc.type | Article | ru_RU |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Jared L. Aurentz, Thomas Mach, Raf Vandebril, David S. Watkins2.pdf
- Size:
- 31.27 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 6.22 KB
- Format:
- Item-specific license agreed upon to submission
- Description: