Fast and stable unitary QR algorithm

dc.contributor.authorAurentz, Jared L.
dc.contributor.authorMach, Thomas
dc.contributor.authorVandebril, Raf
dc.contributor.authorWatkins, David S.
dc.date.accessioned2017-01-09T10:28:50Z
dc.date.available2017-01-09T10:28:50Z
dc.date.issued2015
dc.description.abstractA fast Fortran implementation of a variant of Gragg's unitary Hessenberg QR algorithm is presented. It is proved, moreover, that all QR- And QZ-like algorithms for the unitary eigenvalue problems are equivalent. The algorithm is backward stable. Numerical experiments are presented that confirm the backward stability and compare the speed and accuracy of this algorithm with other methods.ru_RU
dc.identifier.citationAurentz, J. L., Mach, T., Vandebril, R., & Watkins, D. S. (2015). Fast and stable unitary QR algorithm. Electronic Transactions on Numerical Analysis, 44, 327-341.ru_RU
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/2226
dc.language.isoenru_RU
dc.publisherElectronic Transactions on Numerical Analysisru_RU
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectcore transformations rotatorsru_RU
dc.subjecteigenvalueru_RU
dc.subjectFrancis's QR algorithmru_RU
dc.subjectunitary matrixru_RU
dc.titleFast and stable unitary QR algorithmru_RU
dc.typeArticleru_RU

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jared L. Aurentz, Thomas Mach, Raf Vandebril, David S. Watkins2.pdf
Size:
31.27 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.22 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections