EFFECT OF PRE-TREATMENT CONDITIONS ON THE ELECTROCHEMICAL PERFORMANCE OF BIO-WASTE DERIVED CARBON

dc.contributor.authorOniye, Mutiat Modupe
dc.date.accessioned2024-05-20T14:51:12Z
dc.date.available2024-05-20T14:51:12Z
dc.date.issued2024-04-24
dc.description.abstractEnergy companies like CATL, SVOLT, Tiamat, and Natron are actively working on commercializing Sodium-ion Batteries. These batteries offer advantages over Lithium-ion batteries, due to even sodium distribution, relatively inexpensive electrode materials, and safer transportation. The synthesis of Hard-Carbons as anode material is a promising avenue for developing high-capacity Sodium-ion Batteries, given their low insertion voltage and wide interlayer spacing, which enhances sodium-ion insertion. While traditionally these Hard-Carbons are derived from costly carbonaceous materials, the use of abundantly available carbonaceous bio-waste like coffee-waste as Hard-Carbon precursors would not only lower production costs but also contribute to global waste management and disposal. However, the electrochemical performance of bio-waste-derived Hard-Carbon is significantly affected by pre-treatment conditions, both before and after thermal treatment. This research employed characterization techniques like XRD, TEM, and SEM to investigate the impact of pre-treatment conditions, such as washing with various solvents (organic solvent, acid, or distilled water), pre-oxidation and pre-pyrolysis on the coffee-waste-derived hard carbon structure and purity, which consequently influence the electrochemical capacity of the synthesized negative electrode for Sodium-ion Batteries. A 23% yield mesoporous hard-carbon synthesized from washing coffee grounds with de-ionized water and pre-oxidation at 150℃ before thermal treatment at 1300℃ using 5℃/min ramping rate in an argon environment demonstrated an excellent deliverable capacity of 304mAhg-1 and an Initial Coulombic Efficiency of 78%. This study highlights how the washing solvent and pre-oxidation improved the electrochemical performance due to the presence of inorganic impurities and expansion of the graphite inter-layer distance which improves the carbon-oxygen composition, electronic conductivity and sodium insertion of the electrode.en_US
dc.identifier.citationOniye, Mutiat Modupe (2024). Effect of Pre-treatment Conditions on the Electrochemical Performance of Bio-waste Derived Carbon. Nazarbayev University School of Engineering and Digital Sciencesen_US
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/7700
dc.language.isoenen_US
dc.publisherNazarbayev University School of Engineering and Digital Sciencesen_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjecttype of access: open accessen_US
dc.subjectHardCarbonen_US
dc.subjectSIBsen_US
dc.subjectAnode materialsen_US
dc.subjectCoffee-wasteen_US
dc.titleEFFECT OF PRE-TREATMENT CONDITIONS ON THE ELECTROCHEMICAL PERFORMANCE OF BIO-WASTE DERIVED CARBONen_US
dc.typeMaster's thesisen_US
workflow.import.sourcescience

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mutiat Modupe Oniye Master Thesis Manuscript.pdf
Size:
2.52 MB
Format:
Adobe Portable Document Format
Description:
Thesis