Multivariate Mapping of Heavy Metals Spatial Contamination in a Cu–Ni Exploration Field (Botswana) Using Turning Bands Co-simulation Algorithm
dc.contributor.author | Eze, Peter, E. | |
dc.contributor.author | Madani, Nasser | |
dc.contributor.author | Coffi Adoko, Amoussou | |
dc.contributor.editor | Carranza, John | |
dc.date.accessioned | 2018-04-17T10:41:54Z | |
dc.date.available | 2018-04-17T10:41:54Z | |
dc.date.issued | 2018-04 | |
dc.description.abstract | With a mining-driven economy, Botswana has experienced increased geochemical exploration of minerals around existing mining towns. The mining and smelting of copper and nickel around Selibe-Phikwe in the Central Province are capable of releasing heavy metals including Pb, Fe, Mn, Co, Ni and Cu into the soil environments, thereby exposing humans, plants and animals to health risks. In this study, turning bands co-simulation, a multivariate geostatistical algorithm, was presented as a tool for spatial uncertainty quantification and probability mapping of cross-correlated heavy metals (Co, Mn, Fe and Pb) risk assessment in a semiarid Cu–Ni exploration field of Botswana. A total of 1050 soil samples were collected across the field at a depth of 10 cm in a grid sampling design. Rapid elemental concentration analysis was done using an Olympus Delta Sigma portable X-ray fluorescence device. Enrichment factor, geoaccumulation index and pollution load index were used to assess the potential risk of heavy metals contamination in soils. The partially heterotopic nature of the dataset and strong correlations among the heavy metals favors the use of co-simulation instead of independent simulation in the probability mapping of heavy metal risks in the study area. The strong correlation of Co and Mn to iron infers they are of lithogenic origin, unlike Pb which had weak correlation pointing to its source in the area being of anthropogenicsource. Manganese, Co and Fe show low enrichment, whereas Pb had high enrichment suggesting possible lead pollution. We, however, recommend that speciation of Pb in the soils rather than total concentration should be ascertained to infer chances of possible bioaccumulation, and subsequent health risk to human by chronic exposure. | en_US |
dc.description.sponsorship | Nazarbayev University through Faculty Development Competitive Research Grants for 2018–2020 under Contract No. 090118FD5336. | en_US |
dc.identifier.other | doi.org/10.1007/s11053-018-9378-3 | |
dc.identifier.uri | http://nur.nu.edu.kz/handle/123456789/3162 | |
dc.language.iso | en_US | en_US |
dc.publisher | Natural Resources Research | en_US |
dc.rights | CC0 1.0 Universal | * |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.subject | Probability mapping, Gaussian random field, Semiarid soils, Portable XRF device, Uncertainty quantification. | en_US |
dc.title | Multivariate Mapping of Heavy Metals Spatial Contamination in a Cu–Ni Exploration Field (Botswana) Using Turning Bands Co-simulation Algorithm | en_US |
dc.type | Article | en_US |
workflow.import.source | science |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2018_NRR_Thcosim_Heavy_Metals.pdf
- Size:
- 4.23 MB
- Format:
- Adobe Portable Document Format
- Description:
- Main Article
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 6 KB
- Format:
- Item-specific license agreed upon to submission
- Description: