Memristive Threshold Logic Face Recognition

dc.contributor.authorMaan, Akshay Kumar
dc.contributor.authorKumar, Dinesh S.
dc.contributor.authorJames, Alex Pappachen
dc.creatorAkshay Kumar, Maan
dc.date.accessioned2017-12-14T05:26:27Z
dc.date.available2017-12-14T05:26:27Z
dc.date.issued2014-01-01
dc.description.abstractAbstract This paper presents a face recognition method implemented using reconfigurable network of memristive threshold logic cells that can be practically realised in a secondary plane to the pixel arrays. Among the most distinguishing features of the presented system are a) an early detection and storage of only the relevant information directly from the sensors, b) a parallel, scalable information storage and detection architecture in hardware, as opposed to an algorithmic approach, and c) a fast and robust face recognition system. The threshold logic cell is inspired from a simplistic cortical neuron model that has multiple inputs with corresponding input memristors and one binary output. These cells when used with a set of input memristors are able to detect significant pixel variations in the incoming video frame and memorize the output template depending on the logic of selection of the resistor values. The implemented face recognition circuit shows small chip area, low power dissipation and ability to scale the networks with increase in image resolutions.en_US
dc.identifierDOI:10.1016/j.procs.2014.11.090
dc.identifier.citationAkshay Kumar Maan, Dinesh S. Kumar, Alex Pappachen James, Memristive Threshold Logic Face Recognition, In Procedia Computer Science, Volume 41, 2014, Pages 98-103en_US
dc.identifier.issn18770509
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S187705091401535X
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/2889
dc.language.isoenen_US
dc.publisherProcedia Computer Scienceen_US
dc.relation.ispartofProcedia Computer Science
dc.rights.licenseCrown copyright © 2014 Published by Elsevier B.V.
dc.subjectThreshold Logicen_US
dc.subjectResistance Networksen_US
dc.subjectMemristorsen_US
dc.subjectObject Detectionen_US
dc.titleMemristive Threshold Logic Face Recognitionen_US
dc.typeArticleen_US
elsevier.aggregationtypeJournal
elsevier.coverdate2014-01-01
elsevier.coverdisplaydate2014
elsevier.endingpage103
elsevier.identifier.doi10.1016/j.procs.2014.11.090
elsevier.identifier.eid1-s2.0-S187705091401535X
elsevier.identifier.piiS1877-0509(14)01535-X
elsevier.identifier.scopusid84939244190
elsevier.issue.name5th Annual International Conference on Biologically Inspired Cognitive Architectures, 2014 BICA
elsevier.openaccess1
elsevier.openaccessarticletrue
elsevier.openaccessuserlicensehttp://creativecommons.org/licenses/by-nc-nd/3.0/
elsevier.openarchivearticlefalse
elsevier.startingpage98
elsevier.teaserThis paper presents a face recognition method implemented using reconfigurable network of memristive threshold logic cells that can be practically realised in a secondary plane to the pixel arrays....
elsevier.volume41
workflow.import.sourcescience

Files

Collections