Memristive Threshold Logic Face Recognition
| dc.contributor.author | Maan, Akshay Kumar | |
| dc.contributor.author | Kumar, Dinesh S. | |
| dc.contributor.author | James, Alex Pappachen | |
| dc.creator | Akshay Kumar, Maan | |
| dc.date.accessioned | 2017-12-14T05:26:27Z | |
| dc.date.available | 2017-12-14T05:26:27Z | |
| dc.date.issued | 2014-01-01 | |
| dc.description.abstract | Abstract This paper presents a face recognition method implemented using reconfigurable network of memristive threshold logic cells that can be practically realised in a secondary plane to the pixel arrays. Among the most distinguishing features of the presented system are a) an early detection and storage of only the relevant information directly from the sensors, b) a parallel, scalable information storage and detection architecture in hardware, as opposed to an algorithmic approach, and c) a fast and robust face recognition system. The threshold logic cell is inspired from a simplistic cortical neuron model that has multiple inputs with corresponding input memristors and one binary output. These cells when used with a set of input memristors are able to detect significant pixel variations in the incoming video frame and memorize the output template depending on the logic of selection of the resistor values. The implemented face recognition circuit shows small chip area, low power dissipation and ability to scale the networks with increase in image resolutions. | en_US |
| dc.identifier | DOI:10.1016/j.procs.2014.11.090 | |
| dc.identifier.citation | Akshay Kumar Maan, Dinesh S. Kumar, Alex Pappachen James, Memristive Threshold Logic Face Recognition, In Procedia Computer Science, Volume 41, 2014, Pages 98-103 | en_US |
| dc.identifier.issn | 18770509 | |
| dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S187705091401535X | |
| dc.identifier.uri | http://nur.nu.edu.kz/handle/123456789/2889 | |
| dc.language.iso | en | en_US |
| dc.publisher | Procedia Computer Science | en_US |
| dc.relation.ispartof | Procedia Computer Science | |
| dc.rights.license | Crown copyright © 2014 Published by Elsevier B.V. | |
| dc.subject | Threshold Logic | en_US |
| dc.subject | Resistance Networks | en_US |
| dc.subject | Memristors | en_US |
| dc.subject | Object Detection | en_US |
| dc.title | Memristive Threshold Logic Face Recognition | en_US |
| dc.type | Article | en_US |
| elsevier.aggregationtype | Journal | |
| elsevier.coverdate | 2014-01-01 | |
| elsevier.coverdisplaydate | 2014 | |
| elsevier.endingpage | 103 | |
| elsevier.identifier.doi | 10.1016/j.procs.2014.11.090 | |
| elsevier.identifier.eid | 1-s2.0-S187705091401535X | |
| elsevier.identifier.pii | S1877-0509(14)01535-X | |
| elsevier.identifier.scopusid | 84939244190 | |
| elsevier.issue.name | 5th Annual International Conference on Biologically Inspired Cognitive Architectures, 2014 BICA | |
| elsevier.openaccess | 1 | |
| elsevier.openaccessarticle | true | |
| elsevier.openaccessuserlicense | http://creativecommons.org/licenses/by-nc-nd/3.0/ | |
| elsevier.openarchivearticle | false | |
| elsevier.startingpage | 98 | |
| elsevier.teaser | This paper presents a face recognition method implemented using reconfigurable network of memristive threshold logic cells that can be practically realised in a secondary plane to the pixel arrays.... | |
| elsevier.volume | 41 | |
| workflow.import.source | science |