Euler semigroup, Hardy–Sobolev and Gagliardo–Nirenberg type inequalities on homogeneous groups

dc.contributor.authorMichael Ruzhansky
dc.contributor.authorDurvudkhan Suragan
dc.contributor.authorNurgissa Yessirkegenov
dc.date.accessioned2025-08-19T12:39:23Z
dc.date.available2025-08-19T12:39:23Z
dc.date.issued2020-01-01
dc.description.abstractIn this paper we describe the Euler semigroup {e−t피∗피}t>0 on homogeneous Lie groups, which allows us to obtain various types of the Hardy–Sobolev and Gagliardo–Nirenberg type inequalities for the Euler operator 피. Moreover, the sharp remainder terms of the Sobolev type inequality, maximal Hardy inequality and radial weighted Hardy–Sobolev type inequality are established.en
dc.identifier.citationRuzhansky M, Suragan D, Yessirkegenov N (2020). Euler semigroup, Hardy–Sobolev and Gagliardo–Nirenberg type inequalities on homogeneous groups. Semigroup Forum, 101(1):162–191. doi:10.1007/s00233-020-10110-9 en
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9611
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofJournal of Mathematical Analysisen
dc.rightsAll rights reserveden
dc.sourceJournal of Mathematical Analysis, (2020)en
dc.subjectHardy inequality · Sobolev inequality · Euler semigroup · Homogeneous group en
dc.titleEuler semigroup, Hardy–Sobolev and Gagliardo–Nirenberg type inequalities on homogeneous groupsen
dc.typeJournal Articleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Euler_semigroup,_Hardy–Sobolev_and_Gagliardo–Nirenberg_type_inequalities_on_homogeneous_groups__a5320135.pdf
Size:
3.08 MB
Format:
Adobe Portable Document Format

Collections