Reusing Weights in Subword-Aware Neural Language Models

dc.contributor.authorTakhanov, Rustem
dc.contributor.authorAssylbekov, Zhenisbek
dc.contributor.authorAssylbekov, Zhenisbek
dc.date.accessioned2025-08-19T09:22:40Z
dc.date.available2025-08-19T09:22:40Z
dc.date.issued2018-01-01
dc.description.abstractThe authors introduce methods for reusing subword embeddings and other parameters in subword-aware neural language models. Techniques improve syllable- and morpheme-aware models' performance while greatly reducing model size. A practical principle is identified: when reusing embedding layers at the output, they should be tied consecutively from bottom up. The best morpheme-aware model significantly outperforms word-level baselines across languages with 20–87 % fewer parameters.
dc.identifier.citationAssylbekov Z, Takhanov R (2018). Reusing Weights in Subword‑Aware Neural Language Models. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp 1413–1423. Association for Computational Linguistics. doi=10.18653/v1/N18‑1128
dc.identifier.doi10.18653/v1/n18-1128
dc.identifier.otherFilename:10.18653_v1_n18-1128.pdf
dc.identifier.urihttps://doi.org/10.18653/v1/n18-1128
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9514
dc.language.isoen
dc.publisherAssociation for Computational Linguistics
dc.relation.ispartofProceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)en
dc.sourceProceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 1413-1423, (2018)en
dc.subjectsubword embeddings, weight tying, subword-aware models, morpheme-aware language models, model compression
dc.titleReusing Weights in Subword-Aware Neural Language Modelsen
dc.typeJournal Articleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.18653_v1_n18-1128.pdf
Size:
351.8 KB
Format:
Adobe Portable Document Format

Collections