Bit-Plane Extracted Moving-Object Detection Using Memristive Crossbar-CAM Arrays for Edge Computing Image Devices
| dc.contributor.author | Dastanova, Nazgul | |
| dc.contributor.author | Duisenbay, Sultan | |
| dc.contributor.author | Krestinskaya, Olga | |
| dc.contributor.author | Pappachen James, Alex | |
| dc.date.accessioned | 2020-05-18T04:50:08Z | |
| dc.date.available | 2020-05-18T04:50:08Z | |
| dc.date.issued | 2018-03 | |
| dc.description.abstract | In this paper, we present the hardware implementation of a novel algorithm for moving-object detection, which can be integrated with CMOS image sensors. Bit planes of consecutive frames are stored in memristive crossbar arrays and compared using threshold-logic XOR gates. The resulting outputs are combined using weighted summation circuits and thresholded using comparators, to obtain binary images. A resistive content-addressable memory (CAM) array is used in the output stage to observe the numbers of different object pixels in the first and second pairs of the processed frames, in a row-by-row manner. The CAM array output conveys information on the motion direction and allows for optimal memory utilization through the selective row-wise storage of different bits. The proposed method outperforms the conventional moving-object detection algorithms, in terms of accuracy, specificity, and positive prediction metrics, and performs comparably in terms of other metrics. | en_US |
| dc.identifier.citation | Dastanova, N., Duisenbay, S., Krestinskaya, O., & James, A. P. (2018). Bit-Plane Extracted Moving-Object Detection Using Memristive Crossbar-CAM Arrays for Edge Computing Image Devices. IEEE Access, 6, 18954–18966. https://doi.org/10.1109/access.2018.2819986 | en_US |
| dc.identifier.issn | 2169-3536 | |
| dc.identifier.other | 10.1109/ACCESS.2018.2819986 | |
| dc.identifier.uri | https://doi.org/10.1109/access.2018.2819986 | |
| dc.identifier.uri | https://ieeexplore.ieee.org/document/8329223 | |
| dc.identifier.uri | http://nur.nu.edu.kz/handle/123456789/4722 | |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE | en_US |
| dc.relation.ispartofseries | IEEE Access; | |
| dc.rights | Attribution-NonCommercial-ShareAlike 3.0 United States | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/us/ | * |
| dc.subject | Moving object detection | en_US |
| dc.subject | edge devices | en_US |
| dc.subject | threshold logic gate | en_US |
| dc.subject | crossbar array | en_US |
| dc.subject | bit-plane extraction | en_US |
| dc.subject | memristor | en_US |
| dc.subject | Research Subject Categories::TECHNOLOGY | en_US |
| dc.title | Bit-Plane Extracted Moving-Object Detection Using Memristive Crossbar-CAM Arrays for Edge Computing Image Devices | en_US |
| dc.type | Article | en_US |
| workflow.import.source | science |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Bit-Plane Extracted Moving-Object Detection Using Memristive Crossbar-CAM Arrays for Edge Computing Image Devices.pdf
- Size:
- 1.9 MB
- Format:
- Adobe Portable Document Format
- Description:
- Article