Pull-in solutions to MEMS model of parallel plate capacitor
| dc.contributor.author | Turganov, Alkham | |
| dc.date.accessioned | 2025-05-14T06:45:12Z | |
| dc.date.available | 2025-05-14T06:45:12Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | In the MEMS model of a parallel plate capacitor, pull-in instability occurs when the voltage exceeds the threshold value. This phenomenon represents a performance limit in most MEMS devices, whereas microscale switches and accelerometers operate by this. Although single-degree-of-freedom (SDOF) spring–mass models are commonly employed to forecast static and dynamic pull-in, precise time-domain solutions cannot be represented by elementary functions. Current analyses typically either linearize the governing nonlinear ordinary differential equation or rely on numerical simulations and semi-analytic solutions. This thesis presents an implicit analytical pull-in solu tion for the pull-in time of the undamped, constant-voltage single-degree-of-freedom model, expressed clearly in relation to complete elliptic integrals. We proceed by developing two complementary Puiseux-series expansions for the transient trajectory. The first expansion is derived using the Lagrange inversion theorem in relation to the touchdown point, while the second is aligned with the zero-initial-condition deriva tives through a truncated series and a linear system. Both series illustrate the final approach to collapse through the use of fractional exponents, shedding light on the singularity structure of the solution. The use of high-precision solvers for numerical integration demonstrates a strong alignment between the implicit formula and the exact trajectory, with L2 errors remaining below 1e − 9 throughout the entire pa rameter range of K > 1 8. The Puiseux series approximation achieves an accuracy of less than one percent for K ≥ 05, and when used together, they offer a practical and clear approximation throughout the entire transient period. This thesis combines elliptic-integral solutions with convergent series in the neighborhood of the pull-in, providing a complete analytical toolkit for rapidly predicting the pull-in dynamics in standard MEMS capacitors. This advancement allows for significant reductions in computational costs and improves our understanding of nonlinear collapse, which is crucial for effective device design and optimization. | |
| dc.identifier.citation | Turganov, Alkham. (2025). Pull-in solutions to MEMS model of parallel plate capacitor. Nazarbayev University School of Sciences and Humanities. | |
| dc.identifier.uri | https://nur.nu.edu.kz/handle/123456789/8470 | |
| dc.language.iso | en | |
| dc.publisher | Nazarbayev University School of Sciences and Humanities | |
| dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | en |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
| dc.subject | Type of access: Embargo | |
| dc.subject | MEMS | |
| dc.subject | Elliptic Integrals | |
| dc.subject | Nonlinear ODE | |
| dc.title | Pull-in solutions to MEMS model of parallel plate capacitor | |
| dc.type | Master`s thesis |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- thesis_masters_Alkham.pdf
- Size:
- 903.39 KB
- Format:
- Adobe Portable Document Format
- Description:
- Master's thesis