Context Vectors Are Reflections of Word Vectors in Half the Dimensions

Loading...
Thumbnail Image

Date

2019-09

Authors

Assylbekov, Zhenisbek
Takhanov, Rustem

Journal Title

Journal ISSN

Volume Title

Publisher

AI ACCESS FOUNDATION

Abstract

This paper takes a step towards theoretical analysis of the relationship between word embeddings and context embeddings in models such as word2vec. We start from basic probabilistic assumptions on the nature of word vectors, context vectors, and text generation. These assumptions are supported either empirically or theoretically by the existing literature. Next, we show that under these assumptions the widely-used word-word PMI matrix is approximately a random symmetric Gaussian ensemble. This, in turn, implies that context vectors are reflections of word vectors in approximately half the dimensions. As a direct application of our result, we suggest a theoretically grounded way of tying weights in the SGNS model.

Description

https://arxiv.org/pdf/1902.09859.pdf

Keywords

Context Vectors, Reflections of Word Vectors, Word Vectors, Euclidean norm, word2vec

Citation

Assylbekov, Z., & Takhanov, R. (2019). Context Vectors are Reflections of Word Vectors in Half the Dimensions. Journal of Artificial Intelligence Research, 66, 225–242. https://doi.org/10.1613/jair.1.11368

Collections