Effects of internal stresses and intermediate phases on the coarsening of coherent precipitates: A phase-field study

dc.contributor.authorAsle Zaeem, M.
dc.contributor.authorEl Kadiri, H.
dc.contributor.authorHorstemeyer, M.F.
dc.contributor.authorKhafizov, M.
dc.contributor.authorUtegulov, Z.
dc.creatorM., Asle Zaeem
dc.date.accessioned2017-12-22T06:18:32Z
dc.date.available2017-12-22T06:18:32Z
dc.date.issued2012-03-01
dc.description.abstractAbstract Phase stability, topology and size evolution of precipitates are important factors in determining the mechanical properties of crystalline materials. In this article, the Cahn–Hilliard type of phase-field model was coupled to elasticity equations within a mixed-order Galerkin finite element framework to study the coarsening morphology of coherent precipitates. The effects of capillarity, particle size and fraction, compositional strain, and inhomogeneous elasticity on the kinetics and kinematics of coherent precipitates in a binary dual phase crystal admitting a third intermediate stable/meta-stable phase were investigated. The results demonstrated the ability of the model to simulate coarsening under the concomitant action of Ostwald ripening and mismatch elastic strain mechanisms. Using a phenomenological coarsening power law, coarsening rates were determined to depend on precipitate size and volume fraction, compositional strain, and strain mismatch between precipitates and the matrix. Results also showed that the necking incubation time between two neighboring precipitates depends inversely on the precipitate’s initial sizes; however, under fixed volume fraction of precipitates, any increase in the initial sizes of the precipitates mitigates the coarsening. Meanwhile, the compositional strain and the growth of the intermediate stable/meta-stable phase leads to substantial enhancements of precipitate coarsening.en_US
dc.identifierDOI:10.1016/j.cap.2011.09.004
dc.identifier.citationM. Asle Zaeem, H. El Kadiri, M.F. Horstemeyer, M. Khafizov, Z. Utegulov, Effects of internal stresses and intermediate phases on the coarsening of coherent precipitates: A phase-field study, In Current Applied Physics, Volume 12, Issue 2, 2012, Pages 570-580en_US
dc.identifier.issn15671739
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1567173911004676
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/3039
dc.language.isoenen_US
dc.publisherCurrent Applied Physicsen_US
dc.relation.ispartofCurrent Applied Physics
dc.rights.licenseCopyright © 2011 Elsevier B.V. All rights reserved.
dc.subjectCahn–Hilliard phase-field modelen_US
dc.subjectCoherent precipitatesen_US
dc.subjectCoarseningen_US
dc.subjectCompositional strainen_US
dc.subjectIntermediate phaseen_US
dc.subjectFinite elementen_US
dc.titleEffects of internal stresses and intermediate phases on the coarsening of coherent precipitates: A phase-field studyen_US
dc.typeArticleen_US
elsevier.aggregationtypeJournal
elsevier.coverdate2012-03-01
elsevier.coverdisplaydateMarch 2012
elsevier.endingpage580
elsevier.identifier.doi10.1016/j.cap.2011.09.004
elsevier.identifier.eid1-s2.0-S1567173911004676
elsevier.identifier.piiS1567-1739(11)00467-6
elsevier.identifier.scopusid81155139635
elsevier.issue.identifier2
elsevier.openaccess0
elsevier.openaccessarticlefalse
elsevier.openarchivearticlefalse
elsevier.startingpage570
elsevier.teaserPhase stability, topology and size evolution of precipitates are important factors in determining the mechanical properties of crystalline materials. In this article, the Cahn–Hilliard type of phase-field...
elsevier.volume12
workflow.import.sourcescience

Files

Collections