Hardy–Littlewood–Sobolev and Stein–Weiss Inequalities on Homogeneous Lie Groups

dc.contributor.authorAidyn Kassymov;
dc.contributor.authorMichael Ruzhansky;
dc.contributor.authorDurvudkhan Suragan
dc.date.accessioned2025-08-08T07:02:12Z
dc.date.available2025-08-08T07:02:12Z
dc.date.issued2019
dc.description.abstractIn this note we prove the Stein-Weiss inequality on general homogeneous Lie groups. The obtained results extend previously known inequalities. Special properties of homogeneous norms play a key role in our proofs. Also, we give a simple proof of the Hardy-Littlewood-Sobolev inequality on general homogeneous Lie groups.
dc.identifier.citationKassymov, A., Ruzhansky, M., & Suragan, D. (2019). Hardy–Littlewood–Sobolev and Stein–Weiss Inequalities on Homogeneous Lie Groups. Integral Transforms and Special Functions, 30(8), 643–655. https://doi.org/10.1080/10652469.2019.1597080
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9154
dc.language.isoen
dc.subjectRiesz potential
dc.subjectHardy–Littlewood–Sobolev inequality
dc.subjectStein–Weiss inequality
dc.subjectfractional operator
dc.subjectfractional integral
dc.subjecthomogeneous Lie group
dc.titleHardy–Littlewood–Sobolev and Stein–Weiss Inequalities on Homogeneous Lie Groups
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
85063757077_Hardy Inequalities on Homogeneous Groups.pdf
Size:
939.17 KB
Format:
Adobe Portable Document Format

Collections