SENSOR BASED REAL-TIME HUMAN ACTIVITY RECOGNITION IN WIRELESS MULTIMEDIA SENSOR NETWORK
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Nazarbayev University School of Engineering and Digital Sciences
Abstract
Human Activity Recognition (HAR) can be widely used in medicine and military applications. Primarily, it can be used as an assistive technology for the healthcare of older people. In general, HAR can be performed using the data collected from the various type of sensors: body, object and ambient sensors. There are two types of sensors: external and internal. A typical example of applications, which use external sensors, is intelligent home implementations that contain many sensors, such as temperature, pressure, light, ultrasonic sensors, and cameras. In this study, data from internal sensors were used for HAR of activities including walking, walking up or downstairs, sitting, standing, and falling from the collected data of smartphones. In addition, all the HAR models experimented with by Wireless Multimedia Sensor Network (WMSN) with the real-time collected dataset. For the recognition, we use various neural network algorithms as CNN, LSTM and traditional Machine learning classification algorithms such as SVM, KNN, and Random Forest Classifier. In addition, we implemented dimensionality reduction to decrease the number of features, which helped reduce computational time and energy consumption, and transfer learning with different scenarios to increase accuracy, and all these functions are implemented and compared in two WMSN architectures.
Description
Keywords
Citation
Almakhan, S. (2021). Sensor based Real-time Human Activity Recognition in Wireless Multimedia Sensor Network (Unpublished master's thesis). Nazarbayev University, Nur-Sultan, Kazakhstan
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States
