Diagnostic Potential of Imaging Flow Cytometry
| dc.contributor.author | Minh Doan | |
| dc.contributor.author | Ivan Vorobjev | |
| dc.contributor.author | Paul Rees | |
| dc.contributor.author | Andrew Filby | |
| dc.contributor.author | Olaf Wolkenhauer | |
| dc.contributor.author | Anne E. Goldfeld | |
| dc.contributor.author | Judy Lieberman | |
| dc.contributor.author | Natasha Barteneva | |
| dc.contributor.author | Anne E. Carpenter | |
| dc.contributor.author | Holger Hennig | |
| dc.date.accessioned | 2025-08-06T11:54:07Z | |
| dc.date.available | 2025-08-06T11:54:07Z | |
| dc.date.issued | 2018 | |
| dc.description.abstract | Imaging flow cytometry (IFC) captures multichannel images of hundreds of thousands of single cells within minutes. IFC is seeing a paradigm shift from low- to high-information-content analysis, driven partly by deep learning algorithms. We predict a wealth of applications with potential translation... | |
| dc.identifier.citation | Doan, M. et al. (2018). Diagnostic Potential of Imaging Flow Cytometry. Trends in Biotechnology, 36(7), 649–652. DOI: 10.1016/j.tibtech.2017.12.008 | |
| dc.identifier.uri | https://nur.nu.edu.kz/handle/123456789/9129 | |
| dc.language.iso | en | |
| dc.subject | imaging flow cytometry | |
| dc.subject | deep learning | |
| dc.subject | high-content analysis | |
| dc.subject | disease diagnostics | |
| dc.subject | translational medicine | |
| dc.title | Diagnostic Potential of Imaging Flow Cytometry | |
| dc.type | Article |
Files
Original bundle
1 - 1 of 1