Prediction of natural fracture network patterns using feature engineering and machine learning approaches

dc.contributor.authorBakytzhan Kurmanbek
dc.contributor.authorTimur Merembayev
dc.contributor.authorYerlan Amanbek
dc.date.accessioned2025-08-26T11:28:21Z
dc.date.available2025-08-26T11:28:21Z
dc.date.issued2024-10-12
dc.description.abstractWe develop a two-dimensional fracture network prediction model integrating feature engineering and machine learning methodologies. Our approach extracts geometric and spatial features—such as azimuth, distances, and neighbor coordinates—from known fracture networks and uses these to train a LightGBM model to classify fracture segment azimuths into predefined directional sectors. Applied to geological fault data from northern Balkhash Lake in Kazakhstan, the model demonstrates superior performance in estimating fracture network topology in unobserved areas based on known-region features. The results indicate that features derived from six nearest fracture neighbors significantly enhance prediction accuracy.en
dc.identifier.citationKurmanbek Bakytzhan, Merembayev Timur, Amanbek Yerlan. (2024). Prediction of natural fracture network patterns using feature engineering and machine learning approaches. Computational Energy Science. https://doi.org/10.46690/compes.2024.04.02en
dc.identifier.doi10.46690/compes.2024.04.02
dc.identifier.urihttps://doi.org/10.46690/compes.2024.04.02
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/10323
dc.language.isoen
dc.publisherYandy Scientific Press
dc.source(2024)en
dc.subjectFeature engineeringen
dc.subjectFeature (linguistics)en
dc.subjectArtificial intelligenceen
dc.subjectComputer scienceen
dc.subjectFracture (geology)en
dc.subjectNatural (archaeology)en
dc.subjectMachine learningen
dc.subjectEngineeringen
dc.subjectDeep learningen
dc.subjectGeologyen
dc.subjectGeotechnical engineeringen
dc.subjectPaleontologyen
dc.subjectPhilosophyen
dc.subjectLinguistics; type of access: open accessen
dc.titlePrediction of natural fracture network patterns using feature engineering and machine learning approachesen
dc.typearticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.46690_compes.2024.04.02.pdf
Size:
1.37 MB
Format:
Adobe Portable Document Format

Collections