Prediction of natural fracture network patterns using feature engineering and machine learning approaches
| dc.contributor.author | Bakytzhan Kurmanbek | |
| dc.contributor.author | Timur Merembayev | |
| dc.contributor.author | Yerlan Amanbek | |
| dc.date.accessioned | 2025-08-26T11:28:21Z | |
| dc.date.available | 2025-08-26T11:28:21Z | |
| dc.date.issued | 2024-10-12 | |
| dc.description.abstract | We develop a two-dimensional fracture network prediction model integrating feature engineering and machine learning methodologies. Our approach extracts geometric and spatial features—such as azimuth, distances, and neighbor coordinates—from known fracture networks and uses these to train a LightGBM model to classify fracture segment azimuths into predefined directional sectors. Applied to geological fault data from northern Balkhash Lake in Kazakhstan, the model demonstrates superior performance in estimating fracture network topology in unobserved areas based on known-region features. The results indicate that features derived from six nearest fracture neighbors significantly enhance prediction accuracy. | en |
| dc.identifier.citation | Kurmanbek Bakytzhan, Merembayev Timur, Amanbek Yerlan. (2024). Prediction of natural fracture network patterns using feature engineering and machine learning approaches. Computational Energy Science. https://doi.org/10.46690/compes.2024.04.02 | en |
| dc.identifier.doi | 10.46690/compes.2024.04.02 | |
| dc.identifier.uri | https://doi.org/10.46690/compes.2024.04.02 | |
| dc.identifier.uri | https://nur.nu.edu.kz/handle/123456789/10323 | |
| dc.language.iso | en | |
| dc.publisher | Yandy Scientific Press | |
| dc.source | (2024) | en |
| dc.subject | Feature engineering | en |
| dc.subject | Feature (linguistics) | en |
| dc.subject | Artificial intelligence | en |
| dc.subject | Computer science | en |
| dc.subject | Fracture (geology) | en |
| dc.subject | Natural (archaeology) | en |
| dc.subject | Machine learning | en |
| dc.subject | Engineering | en |
| dc.subject | Deep learning | en |
| dc.subject | Geology | en |
| dc.subject | Geotechnical engineering | en |
| dc.subject | Paleontology | en |
| dc.subject | Philosophy | en |
| dc.subject | Linguistics; type of access: open access | en |
| dc.title | Prediction of natural fracture network patterns using feature engineering and machine learning approaches | en |
| dc.type | article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.46690_compes.2024.04.02.pdf
- Size:
- 1.37 MB
- Format:
- Adobe Portable Document Format