Multi-Modal Data Fusion Using Deep Neural Network for Condition Monitoring of High Voltage Insulator
| dc.contributor.author | Damira Mussina | |
| dc.contributor.author | Aidana Irmanova | |
| dc.contributor.author | Prashant K. Jamwal | |
| dc.contributor.author | Mehdi Bagheri | |
| dc.date.accessioned | 2025-08-20T04:03:58Z | |
| dc.date.available | 2025-08-20T04:03:58Z | |
| dc.date.issued | 2020-01-01 | |
| dc.description.abstract | This research proposes a novel Fusion Convolutional Network (FCN) combining a CNN with a binary multilayer neural network (MNN) sub-classifier, forming a multi-modal information fusion system (MMIF) for real-time monitoring of high-voltage insulator surface condition via UAV-captured imagery and leakage current data. The fusion of image-based classification and leakage current readings allowed classification accuracy to increase from 92 % to 99.76 %. Traditional classifiers based on wavelet transform and PCA, as well as various CNN architectures, were benchmarked, and the hardware implementation potential on UAV edge devices was discussed., | en |
| dc.identifier.citation | Mussina, D.; Irmanova, A.; Jamwal, P.K.; Bagheri, M. (2020). IEEE Access, 8, 184486–184496. https://doi.org/10.1109/ACCESS.2020.3027825 | en |
| dc.identifier.doi | 10.1109/ACCESS.2020.3027825 | |
| dc.identifier.uri | https://doi.org/10.1109/ACCESS.2020.3027825 | |
| dc.identifier.uri | https://nur.nu.edu.kz/handle/123456789/9642 | |
| dc.language.iso | en | |
| dc.publisher | IEEE | |
| dc.relation.ispartof | IEEE Access | en |
| dc.rights | Open access | en |
| dc.source | IEEE Access, 8, 184486–184496, (2020) | en |
| dc.subject | UAV inspection | en |
| dc.subject | deep learning | en |
| dc.subject | insulator condition | en |
| dc.subject | data fusion | en |
| dc.title | Multi-Modal Data Fusion Using Deep Neural Network for Condition Monitoring of High Voltage Insulator | en |
| dc.type | Journal Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Multi-Modal_Data_Fusion_Using_Deep_Neural_Network_for_Condition_Monitoring_of_High_Voltage_Insulator__728f1346.pdf
- Size:
- 1.5 MB
- Format:
- Adobe Portable Document Format