Diagnostic Potential of Imaging Flow Cytometry

dc.contributor.authorVorobyev, Ivan
dc.contributor.authorBarteneva, Natasha S.
dc.date.accessioned2019-11-01T08:43:03Z
dc.date.available2019-11-01T08:43:03Z
dc.date.issued2018-07-01
dc.description.abstractImaging flow cytometry (IFC) captures multichannel images of hundreds of thousands of single cells within minutes. IFC is seeing a paradigm shift from low- to high-information-content analysis, driven partly by deep learning algorithms. We predict a wealth of applications with potential translation into clinical practice.en_US
dc.identifier.citationDoan, M., Vorobyev, I., Rees, P., Filby, A., Wolkenhauer, O., Goldfeld, A. E., ... Hennig, H. (2018). Diagnostic Potential of Imaging Flow Cytometry. Trends in Biotechnology, 36(7), 649-652. https://doi.org/10.1016/j.tibtech.2017.12.008en_US
dc.identifier.urihttps://doi.org/10.1016/j.tibtech.2017.12.008
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/4281
dc.language.isoenen_US
dc.publisherNazarbayev University School of Sciences and Humanitiesen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.titleDiagnostic Potential of Imaging Flow Cytometryen_US
dc.typeArticleen_US
workflow.import.sourcescience

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0167779918300039-main.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections