Fiber-Optic Temperature and Pressure Sensors Applied to Radiofrequency Thermal Ablation in Liver Phantom: Methodology and Experimental Measurements
Loading...
Date
Authors
Tosi, Daniele
Macchi, Edoardo Gino
Cigada, Alfredo
Journal Title
Journal ISSN
Volume Title
Publisher
Journal of Sensors
Abstract
Radiofrequency thermal ablation (RFA) is a procedure aimed at interventional cancer care and is applied to the treatment of small- and midsize tumors in lung, kidney, liver, and other tissues. RFA generates a selective high-temperature field in the tissue; temperature values and their persistency are directly related to themortality rate of tumor cells. Temperature measurement in up to 3–5 points, using electrical thermocouples, belongs to the present clinical practice of RFA and is the foundation of a physical model of the ablation process. Fiber-optic sensors allow extending the detection of biophysical parameters to a vast plurality of sensing points, using miniature and noninvasive technologies that do not alter the RFA pattern.This work addresses the methodology for
optical measurement of temperature distribution and pressure using four different fiber-optic technologies: fiber Bragg gratings (FBGs), linearly chirped FBGs (LCFBGs),Rayleigh scattering-based distributed temperature system (DTS), and extrinsic Fabry-Perot interferometry (EFPI). For each instrument, methodology for ex vivo sensing, as well as experimental results, is reported, leading to the application of fiber-optic technologies in vivo.The possibility of using a fiber-optic sensor network, in conjunction with a suitable ablation device, can enable smart ablation procedure whereas ablation parameters are dynamically changed.
Description
Citation
Tosi Daniele et al.(>2), 2015, Fiber-Optic Temperature and Pressure Sensors Applied to Radiofrequency Thermal Ablation in Liver Phantom: Methodology and Experimental Measurements, Journal of Sensors, vol.2015, 22 pages
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Open Access - the content is available to the general public
