Detecting Disorders in Human Walking Behaviors Using Deep Learning

dc.contributor.authorTemirbek, Islambek
dc.date.accessioned2020-05-18T04:17:13Z
dc.date.available2020-05-18T04:17:13Z
dc.date.issued2020-05
dc.description.abstractIn modern clinics, quantitative analyses are used to diagnose and treat gait pathology. Accordingly, foretasting walking kinematics and kinetics of people benefits to better understand gait patterns and construct assisting devices for rehabilitation. This capstone research proposes a deep learning algorithm (LSTM) for forecasting the walking kinematic of the knee in the Cartesian coordinate system. The hyper-parameter optimization using Gaussian Process method was used to predict walking kinematics of knee with an accuracy of 97%.en_US
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/4720
dc.language.isoenen_US
dc.publisherNazarbayev University School of Engineering and Digital Sciencesen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectdeep learning algorithmen_US
dc.subjectLSTMen_US
dc.subjectLong short-term memoryen_US
dc.subjectResearch Subject Categories::TECHNOLOGYen_US
dc.subjectRoot mean square propen_US
dc.subjectRMSPropen_US
dc.titleDetecting Disorders in Human Walking Behaviors Using Deep Learningen_US
dc.typeCapstone Projecten_US
workflow.import.sourcescience

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IslambekTemirbek_Detecting_disorders_in_human_walking behaviors_using_deep_learning_BehrouzMaham.pdf
Size:
865.17 KB
Format:
Adobe Portable Document Format
Description:
Capstone project