EXTREME HAWKING RADIATION
dc.contributor.author | Good, Michael R.R. | |
dc.date.accessioned | 2022-07-07T04:28:49Z | |
dc.date.available | 2022-07-07T04:28:49Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Modeling the collapse of an extreme Reissner-Nordstr¨om (ERN) black hole by solving the corre sponding moving mirror model for the trajectory that asymptotically approaches uniform accelera tion, we obtain the non-zero beta coefficients for all times. Finite energy is emitted, the radiation spectra is non-thermal (non-steady / not Planck), soft particles characterize the evaporation, and particle production at ultra-late times is damped. Entanglement entropy diverges with no Page curve turn-over, demonstrating non-thermal information loss. The radiation obeys time-reversal symmetry | en_US |
dc.identifier.citation | Good, M. R. (2020). Extremal Hawking radiation. Physical Review D, 101(10). https://doi.org/10.1103/physrevd.101.104050 | en_US |
dc.identifier.uri | http://nur.nu.edu.kz/handle/123456789/6377 | |
dc.language.iso | en | en_US |
dc.publisher | arxiv | en_US |
dc.rights | Attribution-NonCommercial-ShareAlike 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/us/ | * |
dc.subject | Type of access: Open Access | en_US |
dc.subject | radiation | en_US |
dc.subject | extreme Reissner-Nordstr¨om | en_US |
dc.title | EXTREME HAWKING RADIATION | en_US |
dc.type | Article | en_US |
workflow.import.source | science |