Dataset for Automatic Region-based Coronary Artery Disease Diagnostics Using X-Ray Angiography Images

dc.contributor.authorMaxim G. Popov
dc.contributor.authorAkmaral Amanturdieva
dc.contributor.authorNuren Zhaksylyk
dc.contributor.authorAlsabir Alkanov
dc.contributor.authorAdilbek Saniyazbekov
dc.contributor.authorTemirgali Aimyshev
dc.contributor.authorEldar Ismailov
dc.contributor.authorAblay Bulegenov
dc.contributor.authorArystan Kuzhukeyev
dc.contributor.authorAizhan Kulanbayeva
dc.contributor.authorAlmat Kalzhanov
dc.contributor.authorNurzhan Temenov
dc.contributor.authorAlexey Kolesnikov
dc.contributor.authorOrazbek Sakhov
dc.contributor.authorSiamac Fazli
dc.date.accessioned2025-08-26T08:36:06Z
dc.date.available2025-08-26T08:36:06Z
dc.date.issued2024-01-03
dc.description.abstractX-ray coronary angiography is the most common tool for the diagnosis and treatment of coronary artery disease. It involves the injection of contrast agents into coronary vessels using a catheter to highlight the coronary vessel structure. Typically, multiple 2D X-ray projections are recorded from different angles to improve visualization. Recent advances in the development of deep-learning-based tools promise significant improvement in diagnosing and treating coronary artery disease. However, the limited public availability of annotated X-ray coronary angiography image datasets presents a challenge for objective assessment and comparison of existing tools and the development of novel methods. To address this challenge, we introduce a novel ARCADE dataset with 2 objectives: coronary vessel classification and stenosis detection. Each objective contains 1500 expert-labeled X-ray coronary angiography images representing: i) coronary artery segments; and ii) the locations of stenotic plaques. These datasets will serve as a benchmark for developing new methods and assessing existing approaches for the automated diagnosis and risk assessment of coronary artery disease.en
dc.identifier.citationPopov Maxim, Amanturdieva Akmaral, Zhaksylyk Nuren, Alkanov Alsabir, Saniyazbekov Adilbek, Aimyshev Temirgali, Ismailov Eldar, Bulegenov Ablay, Kuzhukeyev Arystan, Kulanbayeva Aizhan, Kalzhanov Almat, Temenov Nurzhan, Kolesnikov Alexey, Sakhov Orazbek, Fazli Siamac. (2024). Dataset for Automatic Region-based Coronary Artery Disease Diagnostics Using X-Ray Angiography Images. Scientific Data. https://doi.org/https://doi.org/10.1038/s41597-023-02871-zen
dc.identifier.doi10.1038/s41597-023-02871-z
dc.identifier.urihttps://doi.org/10.1038/s41597-023-02871-z
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/10034
dc.language.isoen
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofScientific Dataen
dc.rightsAll rights reserveden
dc.sourceScientific Data, (2024)en
dc.subjectCoronary artery diseaseen
dc.subjectMedicineen
dc.subjectCoronary angiographyen
dc.subjectRadiologyen
dc.subjectStenosisen
dc.subjectAngiographyen
dc.subjectArteryen
dc.subjectCoronary arteriesen
dc.subjectCoronary vesselen
dc.subjectInternal medicineen
dc.subjectCardiologyen
dc.subjectArtificial intelligenceen
dc.subjectComputer scienceen
dc.subjectMyocardial infarctionen
dc.subjecttype of access: open accessen
dc.titleDataset for Automatic Region-based Coronary Artery Disease Diagnostics Using X-Ray Angiography Imagesen
dc.typearticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1038_s41597-023-02871-z.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format

Collections