ZnO-CoO Nanopowders for Asymmetric Supercapacitors

dc.contributor.authorNurbolat, Shyryn
dc.contributor.authorZhumakhanov, Zharkyn
dc.contributor.authorKalkozova, Zhanar
dc.contributor.authorAbdullin, Khabibulla
dc.date.accessioned2020-11-06T05:11:13Z
dc.date.available2020-11-06T05:11:13Z
dc.date.issued2020-08
dc.description.abstractZn1-xCoxO nanopowders were obtained by chemical bath deposition followed by thermal annealing. The structure and morphology of the samples were studied by X-ray diffraction analysis and scanning electron microscopy. Raman spectra were studied at room temperature using a Solver Spectrum (NT-MDT) spectrometer with laser excitation at 473 nm. Depending on the synthesis conditions, nanopowders with an average size of 1-2 nm were obtained. It was shown that while chemical precipitation from a solution of zinc nitrate allows to obtain zinc oxide, and chemical precipitation from a solution of cobalt nitrate results in cobalt hydroxocarbonate, the presence of zinc and cobalt in equal molar concentrations inhibits the growth of both zinc oxide and cobalt hydroxocarbonate. The growth mechanism in the case of equal molar concentrations of zinc and cobalt in the growth solution changes dramatically. The resulting material is transformed by annealing in air into ZnCo2O4 oxide. However, it can be easily transformed by annealing at 350 °C in hydrogen atmosphere into a ZnO-CoO solid solution having a ZnO-type hexagonal lattice. The obtained fine powder of ZnO-CoO solid solution has an average crystallite size of 1-2 nm, depending on the conditions of preparation, and optical absorption spectra indicate the presence of doubly charged cobalt Co2+, which is in a tetrahedral environment. XRD and Raman results show that a single-phase Zn0.5Co0.5O solid solution is obtained, which consists of a hexagonal phase of the ZnO type. Electrodes from the obtained material showed a high specific capacity.en_US
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/5081
dc.language.isoenen_US
dc.publisherThe 8th International Conference on Nanomaterials and Advanced Energy Storage Systems; Nazarbayev University; National Laboratory Astana; Institute of Batteriesen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectResearch Subject Categories::TECHNOLOGYen_US
dc.subjectasymmetric supercapacitorsen_US
dc.subjectnanopowdersen_US
dc.subjectNT-MDTen_US
dc.titleZnO-CoO Nanopowders for Asymmetric Supercapacitorsen_US
dc.typeAbstracten_US
workflow.import.sourcescience

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Abstract book INESS 2020_Part72.pdf
Size:
257.08 KB
Format:
Adobe Portable Document Format
Description:
Abstract
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.28 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections