Natural Fracture Network Model Using Machine Learning Approach
| dc.contributor.author | Timur Merembayev | |
| dc.contributor.author | Yerlan Amanbek | |
| dc.date.accessioned | 2025-08-22T10:14:44Z | |
| dc.date.available | 2025-08-22T10:14:44Z | |
| dc.date.issued | 2023-01-01 | |
| dc.description.abstract | A fracture network model is a powerful tool for characterizing fractured rock systems. In this paper, we present the fracture network model by integrating a machine learning algorithm in two-dimensional setting to predict the natural fracture topology in porous media. We also use a machine learning algorithm to predict the fracture azimuth angle for the natural fault data from Kazakhstan. The results indicate that the fracture network model with LightGBM performs better in designing a fracture network parameter for hidden areas based on data from the known area. In addition, the numerical result of the machine learning algorithm shows a good result for randomly selected data of the fracture azimuth. | |
| dc.identifier.citation | Merembayev Timur, Amanbek Yerlan. (2023). Natural Fracture Network Model Using Machine Learning Approach. Lecture Notes in Computer Science. https://doi.org/https://doi.org/10.1007/978-3-031-37114-1_26 | en |
| dc.identifier.doi | 10.1007/978-3-031-37114-1_26 | |
| dc.identifier.uri | https://doi.org/10.1007/978-3-031-37114-1_26 | |
| dc.identifier.uri | https://nur.nu.edu.kz/handle/123456789/9887 | |
| dc.language.iso | en | |
| dc.publisher | Springer Nature Switzerland | |
| dc.relation.ispartof | Lecture Notes in Computer Science | en |
| dc.rights | All rights reserved | en |
| dc.source | Lecture Notes in Computer Science, (2023) | en |
| dc.subject | Fracture (geology) | en |
| dc.subject | Computer science | en |
| dc.subject | Artificial intelligence | en |
| dc.subject | Machine learning | en |
| dc.subject | Fault (geology) | en |
| dc.subject | Azimuth | en |
| dc.subject | Network model | en |
| dc.subject | Algorithm | en |
| dc.subject | Network simulation | en |
| dc.subject | Data mining | en |
| dc.subject | Geology | en |
| dc.subject | Geometry | en |
| dc.subject | Geotechnical engineering | en |
| dc.subject | Distributed computing | en |
| dc.subject | Seismology | en |
| dc.subject | Mathematics | en |
| dc.subject | type of access: open access | en |
| dc.title | Natural Fracture Network Model Using Machine Learning Approach | en |
| dc.type | book-chapter | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Natural_Fracture_Network_Model_Using_Machine_Learning_Approach__b98e7022.pdf
- Size:
- 3.3 MB
- Format:
- Adobe Portable Document Format