A sharp oscillation criterion for a difference equation with constant delay

dc.contributor.authorZ. Li
dc.contributor.authorI. Győri
dc.contributor.authorS.R. Grace
dc.contributor.authorM. Bohner
dc.contributor.authorR.P. Agarwal
dc.contributor.authorR.P. Agarwal
dc.date.accessioned2025-08-19T10:35:30Z
dc.date.available2025-08-19T10:35:30Z
dc.date.issued2020-01-01
dc.description.abstract The paper establishes a refined oscillation criterion for the first-order linear difference equation Δx(n) + p(n) x(n−k) = 0, where p(n) ≥ 0 and k is a positive integer. It shows that if the partial sums ∑_{i=n−k}^{n−1} p(i) are slowly varying, then oscillation of all solutions occurs under the sharp condition lim sup_{n→∞} ∑_{i=n−k}^{n−1} p(i) > (k/(k+1))^(k+1), improving the standard lim inf-based result. An illustrative example demonstrates applicability of the improved criterion. en
dc.identifier.citationAgarwal, R.P.; Bohner, M.; Grace, S.R.; Győri, I.; Li, Z. (2020). Advances in Continuous and Discrete Models, 2020(1), Article 1. https://doi.org/10.1186/s13662-020-02703-8en
dc.identifier.doi10.1186/s13662-020-02703-8
dc.identifier.otherFilename:A_sharp_oscillation_criterion_for_a_difference_equation_with_constant_delay__899869b5.pdf
dc.identifier.urihttps://doi.org/10.1186/s13662-020-02703-8
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9574
dc.language.isoen
dc.publisherSpringerOpen
dc.relation.ispartofAdvances in Continuous and Discrete Modelsen
dc.rightsOpen accessen
dc.sourceAdvances in Continuous and Discrete Models, 2020(1), Article 1, (2020)en
dc.subjecttype of access: open accessen
dc.subjectlimsup conditionen
dc.subjectsharp criterionen
dc.subjectoscillationen
dc.subjectconstant delayen
dc.subjectdifference equationsen
dc.subjectdifference equationsen
dc.titleA sharp oscillation criterion for a difference equation with constant delayen
dc.typeJournal Articleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_sharp_oscillation_criterion_for_a_difference_equation_with_constant_delay__899869b5.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format

Collections