FluentSigners-50: A signer independent benchmark dataset for sign language processing

dc.contributor.authorMedet Mukushev
dc.contributor.authorAidyn Ubingazhibov
dc.contributor.authorAigerim Kydyrbekova
dc.contributor.authorAlfarabi Imashev
dc.contributor.authorVadim Kimmelman
dc.contributor.authorAnara Sandygulova
dc.date.accessioned2025-08-22T10:13:41Z
dc.date.available2025-08-22T10:13:41Z
dc.date.issued2022-09-12
dc.description.abstractThis paper presents a new large-scale signer independent dataset for Kazakh-Russian Sign Language (KRSL) for the purposes of Sign Language Processing. We envision it to serve as a new benchmark dataset for performance evaluations of Continuous Sign Language Recognition (CSLR) and Translation (CSLT) tasks. The proposed FluentSigners-50 dataset consists of 173 sentences performed by 50 KRSL signers resulting in 43,250 video samples. Dataset contributors recorded videos in real-life settings on a wide variety of backgrounds using various devices such as smartphones and web cameras. Therefore, distance to the camera, camera angles and aspect ratio, video quality, and frame rates varied for each dataset contributor. Additionally, the proposed dataset contains a high degree of linguistic and inter-signer variability and thus is a better training set for recognizing a real-life sign language. FluentSigners-50 baseline is established using two state-of-the-art methods, Stochastic CSLR and TSPNet. To this end, we carefully prepared three benchmark train-test splits for models’ evaluations in terms of: signer independence , age independence , and unseen sentences . FluentSigners-50 is publicly available at https://krslproject.github.io/FluentSigners-50/en
dc.identifier.citationMukushev Medet, Ubingazhibov Aidyn, Kydyrbekova Aigerim, Imashev Alfarabi, Kimmelman Vadim, Sandygulova Anara. (2022). FluentSigners-50: A signer independent benchmark dataset for sign language processing. PLOS ONE. https://doi.org/https://doi.org/10.1371/journal.pone.0273649en
dc.identifier.doi10.1371/journal.pone.0273649
dc.identifier.urihttps://doi.org/10.1371/journal.pone.0273649
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9864
dc.language.isoen
dc.publisherPublic Library of Science (PLoS)
dc.relation.ispartofPLOS ONEen
dc.rightsOpen accessen
dc.sourcePLOS ONE, (2022)en
dc.subjectBenchmark (surveying)en
dc.subjectSign (mathematics)en
dc.subjectComputer scienceen
dc.subjectSign languageen
dc.subjectNatural language processingen
dc.subjectArtificial intelligenceen
dc.subjectMathematicsen
dc.subjectCartographyen
dc.subjectLinguisticsen
dc.subjectGeographyen
dc.subjectMathematical analysisen
dc.subjectPhilosophyen
dc.subjecttype of access: open accessen
dc.titleFluentSigners-50: A signer independent benchmark dataset for sign language processingen
dc.typearticleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FluentSigners-50__A_signer_independent_benchmark_dataset_for_sign_language_processing__643e8fa3.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format

Collections