Step bombing with both directions of the current: Vicinal W(110) surfaces versus atomistic-scale model

dc.contributor.authorOlzat Toktarbaiuly
dc.contributor.authorVictor Usov
dc.contributor.authorCormac Ó Coileáin
dc.contributor.authorKatarzyna Siewierska
dc.contributor.authorSergey Krasnikov
dc.contributor.authorEmma Norton
dc.contributor.authorSergey I. Bozhko
dc.contributor.authorValery N. Semenov
dc.contributor.authorAlexander N. Chaika
dc.contributor.authorBarry E. Murphy
dc.contributor.authorOlaf Lübben
dc.contributor.authorFilip Krzyżewski
dc.contributor.authorMagdalena A. Załuska-Kotur
dc.contributor.authorAnna Krasteva
dc.contributor.authorHristina Popova
dc.contributor.authorIgor V. Shvets
dc.contributor.authorVesselin Tonchev
dc.date.accessioned2025-08-06T11:51:55Z
dc.date.available2025-08-06T11:51:55Z
dc.date.issued2018
dc.description.abstractThis study investigates the phenomenon of step bunching on vicinal W(110) surfaces under bidirectional electric current. Combining experimental surface morphology analyses with an atomistic Monte Carlo model, the authors identify key mechanisms driving step motion and clustering under opposite current directions. The findings demonstrate that competing electromigration forces can lead to distinctive intermediate morphologies and reveal asymmetries between upward and downward current-induced bunching behaviors.
dc.identifier.citationToktarbaiuly, O. et al. (2018). Step bunching with both directions of the current: Vicinal W(110) surfaces versus atomistic-scale model. Physical Review B, 97(3): 035436. DOI: 10.1103/PhysRevB.97.035436
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9128
dc.language.isoen
dc.subjectstep bunching
dc.subjectvicinal tungsten surfaces
dc.subjectcurrent-induced surface dynamics
dc.subjectatomistic-scale modeling
dc.subjectsurface diffusion
dc.subjectelectromigration
dc.titleStep bombing with both directions of the current: Vicinal W(110) surfaces versus atomistic-scale model
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevB.97.035436.pdf
Size:
3.56 MB
Format:
Adobe Portable Document Format

Collections