Perturbed Li–Yorke homoclinic chaos

dc.contributor.authorMarat Akhmet
dc.contributor.authorMichal Fečkan
dc.contributor.authorMehmet Onur Fen
dc.contributor.authorArdak Kashkynbayev
dc.date.accessioned2025-08-06T10:41:51Z
dc.date.available2025-08-06T10:41:51Z
dc.date.issued2018
dc.description.abstractIt is rigorously proved that a Li–Yorke chaotic perturbation of a system with a homoclinic orbit creates chaos along each periodic trajectory. The structure of the chaos is investigated, and the existence of infinitely many almost periodic orbits outside the scrambled sets is demonstrated. Control methods such as Ott–Grebogi–Yorke and Pyragas are utilized to stabilize these quasi‑periodic motions. A Duffing oscillator model illustrates the theoretical findings with supporting simulations.
dc.identifier.citationAkhmet M., Fečkan M., Fen M. O., & Kashkynbayev A. (2018). Perturbed Li–Yorke homoclinic chaos. Electronic Journal of Qualitative Theory of Differential Equations, 2018(75), pp. 1–18. DOI: 10.14232/ejqtde.2018.1.75
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9100
dc.language.isoen
dc.subjecthomoclinic orbit
dc.subjectLi–Yorke chaos
dc.subjectalmost periodic orbits
dc.subjectDuffing oscillator
dc.titlePerturbed Li–Yorke homoclinic chaos
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
85053720476.0_10.14232ejqtde.2018.1.75.pdf
Size:
642.77 KB
Format:
Adobe Portable Document Format

Collections