Synthesis and Characterization of Silicon Based Anode Materials
dc.contributor.author | Ould Ely, T. | |
dc.contributor.author | Batyrbekuly, D. | |
dc.contributor.author | Sugurbekov, Y. | |
dc.contributor.author | Stambekova, D. | |
dc.contributor.author | Doherty, M.F. | |
dc.contributor.author | Bakenov, Z. | |
dc.creator | T., Ould Ely | |
dc.date.accessioned | 2017-12-20T09:05:06Z | |
dc.date.available | 2017-12-20T09:05:06Z | |
dc.date.issued | 2017-01-01 | |
dc.description.abstract | Abstract We have synthesized amorphous silicon-nanomaterials displaying high capacity and stable cyclability using an original organometallic approach. The method is based on the decomposition of silicon compounds 1Si-P1-U-2016 and 1Si-P2-C-2016, where silicon is bound to four atoms bearing an electron-withdrawing group on the β-position. These compounds decompose under argon at temperature below 500 °C. Scanning Electron Microscopy displays particles with size less than 50 nm, considerably smaller than the critical size above which silicon nanostructures will pulverize [1]. The nanosilicon particles, remain amorphous upon sintering under argon at 1150 °C, and crystallize only above 1400 °C in air, yielding SiO2 (Tetragonal, space group P41212). The silicon nanoparticles show excellent cycling performance, retaining a specific capacity of 1000 mAh g-1, and maintain more than 98% of its initial reversible capacity after 150 cycles. High specific capacity and stable cycle performance of the synthesized silicon makes it a promising anode material for lithium ion batteries | en_US |
dc.identifier | DOI:10.1016/j.matpr.2017.04.023 | |
dc.identifier.citation | T. Ould Ely, D. Batyrbekuly, Y. Sugurbekov, D. Stambekova, M.F. Doherty, Z. Bakenov, Synthesis and Characterization of Silicon Based Anode Materials, In Materials Today: Proceedings, Volume 4, Issue 3, Part A, 2017, Pages 4502-4511 | en_US |
dc.identifier.issn | 22147853 | |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S2214785317305771 | |
dc.identifier.uri | http://nur.nu.edu.kz/handle/123456789/2966 | |
dc.language.iso | en | en_US |
dc.publisher | Materials Today: Proceedings | en_US |
dc.relation.ispartof | Materials Today: Proceedings | |
dc.rights.license | © 2017 Elsevier Ltd. All rights reserved. | |
dc.subject | rechargeable lithium-ion battery | en_US |
dc.subject | anode material | en_US |
dc.subject | silicon nanoparticle | en_US |
dc.title | Synthesis and Characterization of Silicon Based Anode Materials | en_US |
dc.type | Article | en_US |
elsevier.aggregationtype | Journal | |
elsevier.coverdate | 2017-01-01 | |
elsevier.coverdisplaydate | 2017 | |
elsevier.endingpage | 4511 | |
elsevier.identifier.doi | 10.1016/j.matpr.2017.04.023 | |
elsevier.identifier.eid | 1-s2.0-S2214785317305771 | |
elsevier.identifier.pii | S2214-7853(17)30577-1 | |
elsevier.identifier.scopusid | 85020872097 | |
elsevier.issue.identifier | 3 | |
elsevier.issue.name | 4th International Conference on Nanomaterials and Advanced Energy Storage Systems (INESS 2016), August 11-13, 2016, Almaty, Kazakhstan | |
elsevier.openaccess | 0 | |
elsevier.openaccessarticle | false | |
elsevier.openarchivearticle | false | |
elsevier.startingpage | 4502 | |
elsevier.teaser | We have synthesized amorphous silicon-nanomaterials displaying high capacity and stable cyclability using an original organometallic approach. The method is based on the decomposition of silicon compounds... | |
elsevier.volume | 4 | |
workflow.import.source | science |