Dominated convergence theorems in Haagerup noncommutative Lp -spaces

dc.contributor.authorManat Mustafa
dc.contributor.authorTurdebek N. Bekjan
dc.date.accessioned2025
dc.date.issued2023
dc.description.abstractLet M M be a σ σ-finite von Neumann algebra and T:M→M T:M→M be a linear bounded positive map under some natural conditions. We obtain that if (x n)n≥1(x n) n≥1 is a sequence in M converging to x almost uniformly and (x n)n≥1(x n ) n≥1 satisfies certain domination condition, then (T(xn))n≥1(T(x n )) n≥1 converges to T(x) almost uniformly.
dc.identifier.doi10.1007/s43036-023-00261-1
dc.identifier.urihttps://doi.org/10.1007/s43036-023-00261-1
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/13670
dc.languageen
dc.publisherAdvances in Operator Theory
dc.rightsAll rights reserved
dc.sourceAdvances in Operator Theory
dc.subjectEconomic growth
dc.subjectEconomics
dc.subjectBiochemistry
dc.subjectPhilosophy
dc.subjectLinguistics
dc.subjectChemistry
dc.subjectMathematical analysis
dc.subjectVon Neumann architecture
dc.subjectPure mathematics
dc.subjectDiscrete mathematics
dc.subjectConvergence (economics)
dc.subjectSpace (punctuation)
dc.subjectCombinatorics
dc.subjectSequence (biology)
dc.subjectBounded function
dc.subjectVon Neumann algebra
dc.subjectMathematics
dc.subjectNoncommutative geometry
dc.titleDominated convergence theorems in Haagerup noncommutative Lp -spaces
dc.typeArticle

Files

Collections