From Hyperbolic Geometry Back to Word Embeddings

dc.contributor.authorAssylbekov Zhenisbek
dc.contributor.authorNurmukhamedov Sultan
dc.contributor.authorSheverdin Arsen
dc.contributor.authorMach Thomas
dc.date.accessioned2025-08-27T04:56:29Z
dc.date.available2025-08-27T04:56:29Z
dc.date.issued2022-01-01
dc.description.abstractWe choose random points in the hyperbolic disc and claim that these points are already word representations. However, it is yet to be uncovered which point corresponds to which word of the human language of interest. This correspondence can be approximately established using a pointwise mutual information between words and recent alignment techniques.en
dc.identifier.citationAssylbekov Zhenisbek; Nurmukhamedov Sultan; Sheverdin Arsen; Mach Thomas. (2022). From Hyperbolic Geometry Back to Word Embeddings. Proceedings of the 7th Workshop on Representation Learning for NLP. https://doi.org/10.18653/v1/2022.repl4nlp-1.5en
dc.identifier.doi10.18653/v1/2022.repl4nlp-1.5
dc.identifier.urihttps://doi.org/10.18653/v1/2022.repl4nlp-1.5
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/10455
dc.language.isoen
dc.publisherAssociation for Computational Linguistics
dc.source(2022)en
dc.titleFrom Hyperbolic Geometry Back to Word Embeddingsen
dc.typeconference-paperen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.18653_v1_2022.repl4nlp-1.5.pdf
Size:
302.48 KB
Format:
Adobe Portable Document Format

Collections