PHND: Pashtu Handwritten Numerals Database and deep learning benchmark

dc.contributor.authorK. Khan
dc.contributor.authorB. Roh
dc.contributor.authorJ. Ali
dc.contributor.authorR. U. Khan
dc.contributor.authorI. Uddin
dc.date.accessioned2025-08-20T04:59:50Z
dc.date.available2025-08-20T04:59:50Z
dc.date.issued2020-01-01
dc.description.abstractIn this paper we introduce a real Pashtu handwritten numerals dataset (PHND) having 50,000 scanned images and make publicly available for research and scientific use. Although more than fifty million people in the world use this language for written and oral communication, no significant efforts are devoted to the Pashtu Optical Character Recogni tion (POCR). We present a new approach for Pahstu handwritten numerals recognition (PHNR) based on deep neural networks. We train Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) on high-frequency numerals for feature extraction and classification. We evaluated the performance of the proposed algorithm on the newly introduced Pashtu handwritten numerals database PHND and Bangla language number database CMATERDB 3.1.1. We obtained best recognition rate of 98.00% and 98.64% on PHND and CMATERDB 3.1.1. respectively.en
dc.identifier.citationKhan, K.; Roh, B.; Ali, J.; Khan, R.U.; Uddin, I.; et al. (2020). PLOS ONE 15(9): e0238423. https://doi.org/10.1371/journal.pone.0238423en
dc.identifier.doi10.1371/journal.pone.0238423
dc.identifier.urihttps://doi.org/10.1371/journal.pone.0238423
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9683
dc.language.isoen
dc.publisherPLOS
dc.relation.ispartofPLOS ONEen
dc.rightsOpen accessen
dc.sourcePLOS ONE, 15(9), e0238423, (2020)en
dc.titlePHND: Pashtu Handwritten Numerals Database and deep learning benchmarken
dc.typeJournal Articleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PHND__Pashtu_Handwritten_Numerals_Database_and_deep_learning_benchmark__8325e1d0.pdf
Size:
2.02 MB
Format:
Adobe Portable Document Format

Collections