Oscillation of Generalized Differences of Hölder and Zygmund Functions

dc.contributor.authorCastro, Alejandro J.
dc.date.accessioned2025-08-18T10:59:47Z
dc.date.available2025-08-18T10:59:47Z
dc.date.issued2017-06-20
dc.description.abstractWe analyze the oscillation of functions with Hölder or Zygmund regularity via generalized differences and show that its growth obeys a variant of Kolmogorov’s Law of the Iterated Logarithm. A sharper behavior is obtained for Lipschitz functions through a connection with Calderón–Zygmund operators.en
dc.identifier.citationCastro, A.J.; Llorente, J.G.; Nicolau, A. (2018). Oscillation of Generalized Differences of Hölder and Zygmund Functions. Journal of Geometric Analysis, 28(2), 1–22. DOI: 10.1007/s12220-017-9882-4en
dc.identifier.doi10.1007/s12220-017-9882-4
dc.identifier.otherFilename:10.1007_s12220-017-9882-4.pdf
dc.identifier.urihttps://doi.org/10.1007/s12220-017-9882-4
dc.identifier.urihttps://nur.nu.edu.kz/handle/123456789/9282
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofJournal of Geometric Analysisen
dc.sourceJournal of Geometric Analysis, 28(2), 1–22, (2017)en
dc.subjectCalderón–Zygmund operatorsen
dc.titleOscillation of Generalized Differences of Hölder and Zygmund Functionsen
dc.typeJournal Articleen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1007_s12220-017-9882-4.pdf
Size:
215.39 KB
Format:
Adobe Portable Document Format

Collections