Oscillation of Generalized Differences of Hölder and Zygmund Functions
| dc.contributor.author | Castro, Alejandro J. | |
| dc.date.accessioned | 2025-08-18T10:59:47Z | |
| dc.date.available | 2025-08-18T10:59:47Z | |
| dc.date.issued | 2017-06-20 | |
| dc.description.abstract | We analyze the oscillation of functions with Hölder or Zygmund regularity via generalized differences and show that its growth obeys a variant of Kolmogorov’s Law of the Iterated Logarithm. A sharper behavior is obtained for Lipschitz functions through a connection with Calderón–Zygmund operators. | en |
| dc.identifier.citation | Castro, A.J.; Llorente, J.G.; Nicolau, A. (2018). Oscillation of Generalized Differences of Hölder and Zygmund Functions. Journal of Geometric Analysis, 28(2), 1–22. DOI: 10.1007/s12220-017-9882-4 | en |
| dc.identifier.doi | 10.1007/s12220-017-9882-4 | |
| dc.identifier.other | Filename:10.1007_s12220-017-9882-4.pdf | |
| dc.identifier.uri | https://doi.org/10.1007/s12220-017-9882-4 | |
| dc.identifier.uri | https://nur.nu.edu.kz/handle/123456789/9282 | |
| dc.language.iso | en | |
| dc.publisher | Springer | |
| dc.relation.ispartof | Journal of Geometric Analysis | en |
| dc.source | Journal of Geometric Analysis, 28(2), 1–22, (2017) | en |
| dc.subject | Calderón–Zygmund operators | en |
| dc.title | Oscillation of Generalized Differences of Hölder and Zygmund Functions | en |
| dc.type | Journal Article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.1007_s12220-017-9882-4.pdf
- Size:
- 215.39 KB
- Format:
- Adobe Portable Document Format