Escape of mass and entropy for diagonal flows in real rank one situations

dc.contributor.authorEinsiedler, M.
dc.contributor.authorKadyrov, Shirali
dc.contributor.authorPohl, A.
dc.date.accessioned2015-12-28T05:56:48Z
dc.date.available2015-12-28T05:56:48Z
dc.date.issued2011
dc.description.abstractLet G be a connected semisimple Lie group of real rank 1 with finite center, let 􀀀 be a non-uniform lattice in G and a any diagonalizable element in G. We investigate the relation between the metric entropy of a acting on the homogeneous space 􀀀\G and escape of mass. Moreover, we provide bounds on the escaping mass and, as an application, we show that the Hausdorff dimension of the set of orbits (under iteration of a) which miss a fixed open set is not full.ru_RU
dc.identifier.citationEinsiedler M., Kadyrov Shirali, Pohl A; 2011; Escape of mass and entropy for diagonal flows in real rank one situationsru_RU
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/977
dc.language.isoenru_RU
dc.subjectResearch Subject Categories::MATHEMATICSru_RU
dc.subjectHausdorff dimensionru_RU
dc.titleEscape of mass and entropy for diagonal flows in real rank one situationsru_RU
dc.typeArticleru_RU

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
escapemassuniform.pdf
Size:
413.29 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections