ENHANCED ANTIMOULD ACTION OF SURFACE MODIFIED COPPER OXIDE NANOPARTICLES WITH PHENYLBORONIC ACID SURFACE FUNCTIONALITY

dc.contributor.authorHenry, Patricia
dc.contributor.authorHalbus, Ahmed F.
dc.contributor.authorAthab, Zahraa H.
dc.contributor.authorPaunov, Vesselin N.
dc.date.accessioned2021-09-09T09:21:38Z
dc.date.available2021-09-09T09:21:38Z
dc.date.issued2021-03-15
dc.description.abstractAntimould agents are widely used in different applications, such as specialty paints, building materials, wood preservation and crop protection. However, many antimould agents can be toxic to the environment. This work aims to evaluate the application of copper oxide nanoparticles (CuONPs) surface modified with boronic acid (BA) terminal groups as antimould agents. We developed CuONPs grafted with (3-glycidyloxypropyl) trimethoxysilane (GLYMO), coupled with 4-hydroxyphenylboronic acid (4-HPBA), which provided a strong boost of their action as antimould agents. We studied the antimould action of the 4-HPBA-functionalized CuONPs against two mould species: Aspergillus niger (A. niger) and Penicillium chrysogenum (P. chrysogenum). The cis-diol groups of polysaccharides expressed on the mould cell walls can form reversible covalent bonds with the BA groups attached on the CuONPs surface. This allowed them to bind strongly to the mould surface, resulting in a very substantial boost of their antimould activity, which is not based on electrostatic adhesion, as in the case of bare CuONPs. The impact of these BA-surface functionalized nanoparticles was studied by measuring the growth of the mould colonies versus time. The BA-functionalized CuONPs showed significant antimould action, compared to the untreated mould sample at the same conditions and period of time. These results can be applied for the development of more efficient antimould treatments at a lower concentration of active agent with potentially substantial economic and environmental benefitsen_US
dc.identifier.citationHenry, P., Halbus, A. F., Athab, Z. H., & Paunov, V. N. (2021). Enhanced Antimould Action of Surface Modified Copper Oxide Nanoparticles with Phenylboronic Acid Surface Functionality. Biomimetics, 6(1), 19. https://doi.org/10.3390/biomimetics6010019en_US
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/5753
dc.language.isoenen_US
dc.publisherBiomimeticsen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectType of access: Open Accessen_US
dc.subjectPenicillium chrysogenumen_US
dc.subjectAspergillus nigeren_US
dc.subjectcarbohydratesen_US
dc.subjectboronic aciden_US
dc.subject4-hydroxyphenylboronic aciden_US
dc.subjectcopper oxideen_US
dc.subjectantimould nanoparticlesen_US
dc.titleENHANCED ANTIMOULD ACTION OF SURFACE MODIFIED COPPER OXIDE NANOPARTICLES WITH PHENYLBORONIC ACID SURFACE FUNCTIONALITYen_US
dc.typeArticleen_US
workflow.import.sourcescience

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
biomimetics-06-00019-v2.pdf
Size:
5.58 MB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.28 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections