DYNAMICS OF TENSEGRITY ROBOTS WITH NEGATIVE STIFFNESS ELEMENTS
Loading...
Files
Date
Authors
Zhakatayev, Altay
Abdikadirova, Banu
Sarmonov, Shamil
Varol, Huseyin Atakan
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers
Abstract
Tensegrity structures have unique features such as low mass to payload ratio, strength,
and robustness. Therefore, they present great potential in robotics, aerospace, and civil engineering. The
dynamics of tensegrity robots is highly nonlinear and constrained. As a result, their modeling, simulation,
state estimation, and control are non-trivial. Strings in tensegrity structures are usually modeled as linear
springs. Utilization of nonlinear elastic/damping elements in tensegrities would further enrich their dynamics
and endow them with additional properties, such as multiple equilibrium configurations. In this paper, our
preliminary work on the dynamics of actuated tensegrities with strings containing nonlinear elastic and/or
damping elements is presented. At first, the formulation of tensegrity dynamics with general nonlinear
elastic/damping elements is explored. Later dynamics of tensegrities with negative stiffness honeycombs
incorporated into strings are considered. Simulations are performed on three tensegrity systems: two-bar,
three-bar, and six-bar structures. Results demonstrate that negative stiffness honeycombs result in nonlinear
steady-state response to constant external force, reduced force magnitudes in strings and bars, and increased
range of motion.
Description
Citation
Zhakatayev, A., Abdikadirova, B., Sarmonov, S., & Varol, H. A. (2020). Dynamics of Tensegrity Robots With Negative Stiffness Elements. IEEE Access, 8, 187114–187125. https://doi.org/10.1109/access.2020.3031279
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States
