ROLE OF BIMODAL WATER RETENTION CURVE ON THE UNSATURATED SHEAR STRENGTH

Loading...
Thumbnail Image

Date

Authors

Satyanaga, Alfrendo
Bairakhmetov, Nail
Kim, Jong R.
Moon, Sung-Woo

Journal Title

Journal ISSN

Volume Title

Publisher

Applied Sciences

Abstract

Changes in climatic conditions are expected globally resulting in a higher rainfall intensity and longer duration of rainfall. The increase in the rainwater infiltration into the soil contributes to many geotechnical issues, such as excessive settlement, retaining wall failure and rainfall-induced slope failures. These geotechnical problems could be mitigated by the improvement of the problematic soil with the incorporation of the unsaturated soil mechanic principles. Dual-porosity soils or soils with bimodal water retention curve (WRC) are able to retain more water during prolonged drying and they would be able to drain out water faster during intense rainfall to maintain the slope stability. The objective of this study is to investigate the characteristics of the unsaturated shear strength of soil with bimodal WRC. In addition, the new mathematical equation is proposed to estimate the unsaturated shear strength of soils with a bimodal WRC. The results of the study indicated that the nonlinearity of the unsaturated shear strength is a function of the shape of bimodal WRC limited by the first and second air-entry value (AEV) of dual-porosity soils. The proposed equation agreed well with the experimental data of the unsaturated shear strength for dual-porosity soil.

Description

Citation

Satyanaga, A., Bairakhmetov, N., Kim, J. R., & Moon, S. W. (2022). Role of Bimodal Water Retention Curve on the Unsaturated Shear Strength. Applied Sciences, 12(3), 1266. https://doi.org/10.3390/app12031266

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States