Multi-stability analysis of fractional-order quaternion-valued neural networks with time delay
| dc.contributor.author | S. Kathiresan | |
| dc.contributor.author | Ardak Kashkynbayev | |
| dc.contributor.author | K. Janani | |
| dc.contributor.author | R. Rakkiyappan | |
| dc.date.accessioned | 2025-08-22T10:14:38Z | |
| dc.date.available | 2025-08-22T10:14:38Z | |
| dc.date.issued | 2021-12-06 | |
| dc.description.abstract | This paper addresses the problem of multi-stability analysis for fractional-order quaternion-valued neural networks (QVNNs) with time delay. Based on the geometrical properties of activation functions and intermediate value theorem, some conditions are derived for the existence of at least $ (2\mathcal{K}_p^R+1)^n, (2\mathcal{K}_p^I+1)^n, (2\mathcal{K}_p^J+1)^n, (2\mathcal{K}_p^K+1)^n $ equilibrium points, in which $ [(\mathcal{K}_p^R+1)]^n, [(\mathcal{K}_p^I+1)]^n, [(\mathcal{K}_p^J+1)]^n, [(\mathcal{K}_p^K+1)]^n $ of them are uniformly stable while the other equilibrium points become unstable. Thus the developed results show that the QVNNs can have more generalized properties than the real-valued neural networks (RVNNs) or complex-valued neural networks (CVNNs). Finally, two simulation results are given to illustrate the effectiveness and validity of our obtained theoretical results.</p></abstract> | en |
| dc.identifier.citation | Kathiresan S., , Kashkynbayev Ardak, Janani K., Rakkiyappan R., , . (2022). Multi-stability analysis of fractional-order quaternion-valued neural networks with time delay. AIMS Mathematics. https://doi.org/https://doi.org/10.3934/math.2022199 | en |
| dc.identifier.doi | 10.3934/math.2022199 | |
| dc.identifier.uri | https://doi.org/10.3934/math.2022199 | |
| dc.identifier.uri | https://nur.nu.edu.kz/handle/123456789/9885 | |
| dc.language.iso | en | |
| dc.publisher | American Institute of Mathematical Sciences (AIMS) | |
| dc.relation.ispartof | AIMS Mathematics | en |
| dc.source | AIMS Mathematics, (2021) | en |
| dc.subject | Order (exchange) | en |
| dc.subject | Quaternion | en |
| dc.subject | Stability theorem | en |
| dc.subject | Artificial neural network | en |
| dc.subject | Stability (learning theory) | en |
| dc.subject | Mathematics | en |
| dc.subject | Combinatorics | en |
| dc.subject | Physics | en |
| dc.subject | Discrete mathematics | en |
| dc.subject | Mathematical analysis | en |
| dc.subject | Geometry | en |
| dc.subject | Computer science | en |
| dc.subject | Cauchy distribution | en |
| dc.subject | Machine learning | en |
| dc.subject | Finance | en |
| dc.subject | Economics | en |
| dc.subject | type of access: open access | en |
| dc.title | Multi-stability analysis of fractional-order quaternion-valued neural networks with time delay | en |
| dc.type | article | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.3934_math.2022199 (1).pdf
- Size:
- 1.9 MB
- Format:
- Adobe Portable Document Format